

High Accuracy Power Analysis. Anywhere, Anytime.

Upgrade New current sensors

Engineered for more accurate power measurement

Improved frequency bandwidth and accuracy

Full-featured compatibility with current sensors

Current sensing has a substantial impact on power measurement accuracy as well as work efficiency. Hioki designs and develops its current sensors in-house for maximum compatibility with power analyzers and advanced power measurement capability.

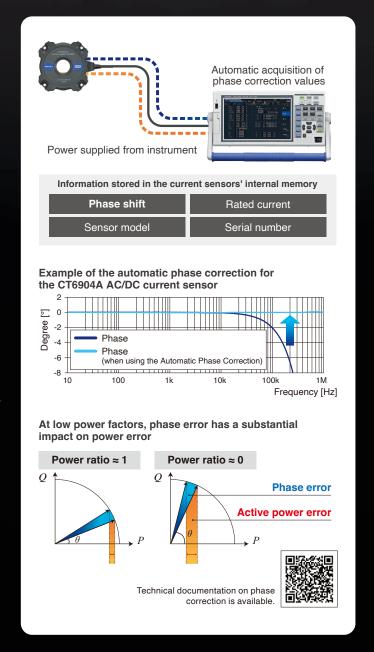
Get started making measurements right away

Standard current sensor power supply and recognition functionality

The PW3390 supplies power to current sensors and automatically sets the appropriate scaling ratio for each. Simply connect sensors and get started making measurements.

2 Accurately measure highfrequency, low-powerfactor power

Current sensor automatic phase correction function


Correcting phase error is important in order to accurately measure high-frequency, low-power-factor power. The PW3390 automatically acquires each current sensor's phase characteristics and performs phase correction with a resolution of 0.001°. As a result, the instrument is able to realize current sensors' full performance without requiring a troublesome configuration process.

Record measurement conditions

Automatic acquisition of current sensor information

When you connect a current sensor to the PW3390, the instrument automatically acquires its model and serial number.

Detailed measurement conditions can be recorded along with measurement data.

4 Extensive product line

EV inverter system R&D Evaluation of reactor and transformer loss

Pass-through sensors offer the ultimate level of accuracy, frequency band, and stability. Broadband measurement of up to 10 MHz and the ability to measure large currents of up to 2000 A make these sensors ideal for use in state-of-the-art R&D.

WLTP-compliant fuel economy (electricity cost) performance testing

This clamp-style sensor lets you quickly and easily connect the instrument for measurement. It's used in testing of assembled vehicles where it would be difficult to cut wires. Capable of withstanding temperatures of -40°C to 85°C, the device can be used in the hot environment of an engine compartment.

Evaluation of reactor and transformer loss Evaluation of inverters in energy-saving household appliances

Our proprietary DCCT method allows our 50 A direct-wired sensor to deliver world-class accuracy and bandwidth.

Are you making measurements under conditions that approach the actual operating environment?

Broadly speaking, there are two ways to detect current: the current sensor method and the direct wiring method. Current sensors let you evaluate equipment accurately under wiring conditions that approach the actual operating environment.

Measurement example using the current sensor method Power converter Short wiring Motor working

Small insertion loss

Little effect from routing

A current sensor is connected to the wiring on the measurement target. This reduces the effects of wiring and loss on the side of the measurement instrument. This allows measurements with wiring conditions that are close to the actual operating environment of a highly efficient system.

Measurement example using the direct wiring method Power converter Power

Converter

Power supply

Wiring resistance loss due to long routing

Instrument loss due to shunt resistance

Leakage current loss due to capacitive coupling

Power meter using shunt method

The wiring of the measurement target is routed for connecting to the current input terminal. However, this results in an increase in the influence of power loss from wiring resistance and capacitive coupling, and meter loss ing due to shunt resistance. All of this loss leads to larger degradation in accuracy.

High Accuracy and Mobility. A New Value for Power Analysis.

The first-generation Power Analyzer 3390 debuted in 2009 with a collection of the latest measurement technologies packed into a compact design.

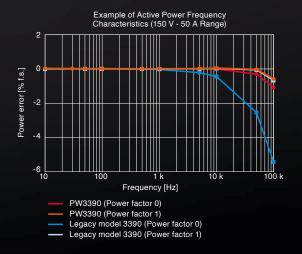
Pair with Hioki current sensors and take them anywhere to immediately make highly accurate measurements.

This was the unique value of the 3390.

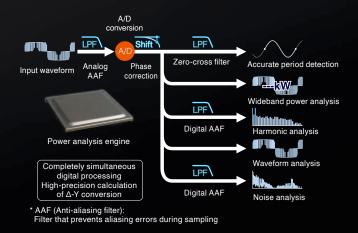
Now, Hioki has enhanced this value while refining the measurement technology even further.

Proper accuracy and bandwidth to precisely measure inverter output.

Phase shift function for the exact measurement of high frequency, low power factor power.


A broad current sensor lineup that expands the range of measurement possibilities.

Refinements that empower you to conduct precise power analysis in any situation.


Complete Pursuit of Measurement Accuracy and High Frequency Characteristics

The PW3390 delivers 4 input channels and ±0.04% basic accuracy for power - the top instrument in its class. Achieve more precise measurements of the power and efficiency of high efficiency equipment used in power electronics. Further, a 200 kHz measurement band and flat amplitude and phase characteristics up to high frequencies enable the precise measurement of power at top frequency levels and low power factor.

Power Analysis Engine That Achieves High-Speed Simultaneous Calculation on 5 Systems

Precisely capture input waveforms with 500 kS/s high-speed sampling and a high resolution 16-bit A/D converter. The power analysis engine performs independent digital processing for 5 systems: period detection, wideband power analysis, harmonic analysis, waveform analysis, and noise analysis. High-speed simultaneous calculation processing enables both precise measurements and a 50 ms data refresh rate.

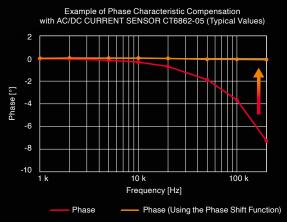
Current Sensors for the Thorough Pursuit of High Accuracy. Achieve Superior Accuracy for High-Frequency, Low Power Factor Power.

High Accuracy Pass-Through Sensor

Pass-through sensors deliver accuracy, broad-band performance, and stability. Measure currents of up to 1000 A with a high degree of accuracy across a broad range of operating temperatures.

High Accuracy Clamp Sensor

Clamp for quick and easy connections. A rich lineup of sensors includes small sensors for narrow spaces and high-current sensors.


High Accuracy Direct Wiring Sensor

Newly developed DCCT method delivers expansive measurement range and superior measurement accuracy at a rating of 50 A.

Built-in Current Sensor Phase Shift Function

Equipped with new virtual oversampling technology. Achieve phase shift equivalent to 200 MS/s while maintaining a high speed of 500 kS/s, as well as a high resolution of 16 bits. Set and correct the phase error of the current sensor at a resolution of 0.01°. Use of the phase shift function results in a dramatic reduction of measurement error. This allows the measurement of high-frequency, low-power factor power included in the switching frequency of inverter output, which is difficult to measure with conventional equipment.

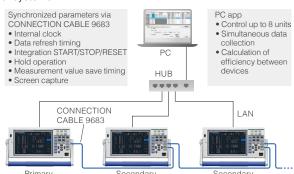
* Virtual oversampling: Technology that uses a sampling frequency several hundred times higher than the actual sampling frequency to perform virtual deskewing

In the Laboratory or in the Field

Take Highly Accurate Measurements Even in Tough Temperature Conditions

Severe temperature environments, such as engine rooms with intense temperature changes and constant temperature rooms, can hinder high accuracy measurements. Hioki provides a lineup of high-accuracy through-type and high-accuracy clamptype current sensors with excellent temperature characteristics and wide operating temperature ranges.

The PW3390 can operate from a low temperature environment of -10°C to a high temperature of 40°C, allowing you to take it to measure in various environments.


Max. 6000 A Measurement on 50 Hz/60 Hz Lines

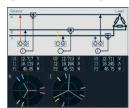
The CT7040 AC FLEXIBLE CURRENT SENSOR series can measure commercial power lines up to 6000 A, including solar power conditioner output. Even thick cables can be wired easily among crowded wiring or in narrow locations.

Acquire Data from up to 8 Synchronized Units (32 Channels)

When you connect CONNECTION CABLE 9683 to multiple PW3390 units, the control signals and internal clocks synchronize. From the primary unit, you can control the measurement timing on the PW3390 units that are set as secondaries. With interval measurement, you can save synchronized measurement data to a CF card or a PC to achieve simultaneous measurements across a larger number of systems.

Achieve High Accuracy Measurement Even in the Field

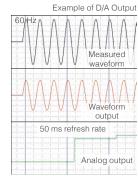
Dramatically compact and light-weight form factor achieved by concentrating the calculation functions in the power analysis engine. Highly accurate measurements normally achieved in the laboratory are now also possible in the field.


External Power Supply Not Needed for Sensor Connections

Power can be supplied to the current sensor from the main unit, so there is no need to provide a separate external power supply for the current sensor. Connected sensors are recognized automatically, for reliable and quick measurements.

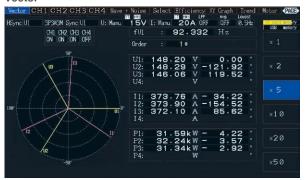
Wiring Displays and Quick Setup Lets You Begin Measuring Immediately

Perform wiring while checking wiring diagrams and vectors on the screen. Optimum settings are performed automatically simply by selecting a connection and using the quick setup function.


Extensive Interface for Linking with External Devices

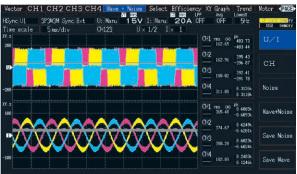
Wide variety of built-in interfaces, including LAN, USB (communication, memory), CF cards, RS-232C, synchronization control, and external control.

D/A output* delivers analog output at 50 ms for up to 16 parameters. The voltage and current waveform** for each channel can also be output.


- * Built-in for PW3390-02 and PW3390-03
- ** During waveform output, accurate reproduction is possible at an output of 500 kS/s and with a sine wave up to 20 kHz.

Switch Screens with a Single Touch, Accessing a Variety of Power Analysis Methods

The power analysis engine allows the simultaneous, parallel calculation of all parameters. Access a variety of analysis methods simply by pressing the page keys to switch screens.



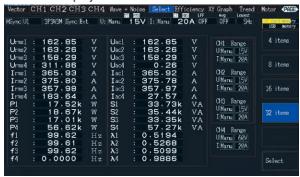
Vector

Confirm the voltage/current/power/phase angle for each harmonic order on a vector graph and as numerical values.

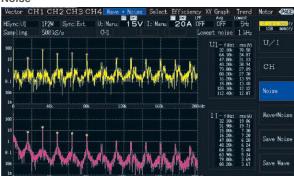
Waveform

Display voltage/current waveforms for 4 channels at a high speed of 500 kS/s or a maximum length of 5 seconds. Waveform data can be saved.

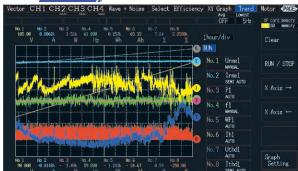
Harmonics Graph


Display harmonics up to the 100th order for voltage/current/power in bar graphs. Confirm the numerical data for the selected order at the same time.

Efficiency and Loss


Using active power values and motor power values, confirm efficiency η [%] and loss [W] and total efficiency for each inverter/motor on a single unit at the same time.

Selection Display

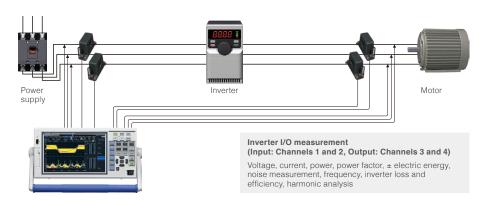

Select 4/8/16/32 display parameters individually for each screen, and summarize them on a single screen.

Noise

Display FFT results for voltage and current as graphs and numerical values, up to a maximum of 200 kHz. This is perfect for the frequency analysis of inverter noise.

Trend | Ver 2.00 |

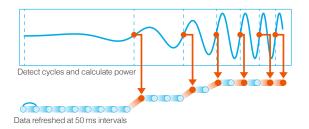
Choose up to eight measurement parameters and display a graph of their variations over time. You can also save a screenshot of the graph.


X-Y Graph

Create inverter characteristic evaluations and motor torque maps. Select the desired parameter to display an X-Y plot graph.

Applications

Measure the Power Conversion Efficiency of Inverters

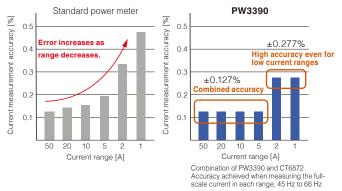


Key features

- Isolated input of voltage and current on each of 4 channels for simultaneous measurement of the primary and secondary power of inverters
- Simultaneous measurement of all important parameters for secondary analysis of inverters, such as RMS value, MEAN value, and fundamental components
- Easy wiring with current sensors.
 Reliable confirmation of wiring with vector diagrams
- Current sensors reduce effects of common mode noise from inverters during power measurement
- Simultaneous measurement of noise components, in addition to the harmonic analysis required for the measurement of inverter control

Highly Accurate and Fast 50 ms Calculation of Power in Transient State

Measure power transient states, including motor operations such as starting and accelerating, at 50 ms refresh rates. Automatically measure and keep up with power with fluctuating frequencies, from a minimum of 0.5 Hz.



Automatic detection of fundamental wave even if the frequency fluctuates, from low to high frequencies

Achieve high accuracy measurement, including in low current ranges

When used with a high accuracy current sensor*1, the PW3390 delivers exceptional accuracy*2. Achieve high accuracy measurement regardless of range, from high to low currents, even for loads that exhibit significant fluctuation.

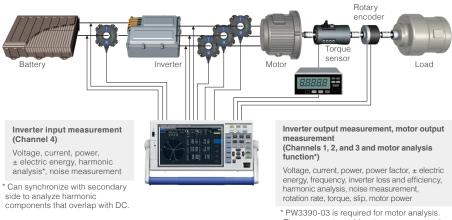
Example of combination accuracy with current sensor

- *1 Pass-through type: CT6872, CT6873, CT6875A, CT6876A, CT6877A Clamp type: CT6841A, CT6843A, CT6844A, CT6845A, CT6846A Direct connection type: PW9100A
- *2 At DC and 50 Hz/60 Hz

Evaluate high-frequency noise from an inverter

Vor 2.00 //

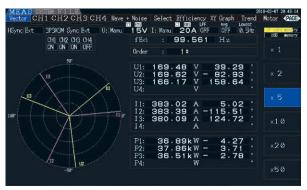
The enhanced noise analysis functionality provided by Version 2.00 of the instrument's firmware lets you perform frequency analysis of noise components from DC to 200 kHz, display and automatically save the top 10 points, and manually save the FFT spectrum. This functionality is an effective tool for evaluating conductive noise from 2 kHz to 150 kHz generated by inverters and switching power supplies.


Visually assess temporal fluctuations in efficiency

Ver 2.00 //

The trend display lets you graph user-selected measurement parameters such as efficiency and frequency over periods of time ranging from dozens of seconds to half a month. This capability makes it possible to visually assess fluctuations, including of transient states in which measured values fluctuate abruptly and steady states in which they exhibit minuscule fluctuations. Graphs can be saved as screenshots, and values can be automatically saved.

Analyze and Measure EV/HEV Inverter Motors


* PW3390-03 is required for motor analysis. The user must provide a torque sensor and rotation sensor.

Key features

- Easy wiring and highly accurate measurements with the use of a passthrough type current sensor
- Simultaneous measurement of all important parameters for secondary analysis of inverters, such as RMS value, MEAN value, and fundamental components
- 3. 0.5 Hz to 5 kHz harmonic analysis without external clock
- 4. Total measurement of inverter motors with built-in motor analysis function
- Measurement of the voltage, torque, rotation rate, frequency, slip, and motor power required for motor analysis with a single unit
- More precise measurements of electrical angle with incremental type encoders

Electric Angle Measurement of Motors (PW3390-03 only) Ver 2.00 //

The PW3390-03 features a built-in electric angle measurement function required for vector control via dq coordinate systems in high-efficiency synchronized motors. Make real-time measurements of phase angles for voltage and current fundamental wave components based on encoder pulses. Further, zero-adjustment of the phase angle when induced voltage occurs allows electric angle measurement based on the inductive voltage phase. Version 2.00 of the firmware introduces the ability to display and manually set phase zero-adjustment values, making it possible to measure electrical angle using a user-selected zero-adjustment value. Electric angle can also be used as an Ld and Lq calculation parameter for synchronized motors.

Display motor electric angles on the vector screen

Motor analysis screen (Torque, rotation rate, motor power, slip)
For CH B, enter the Z-phase pulse of the encoder to measure electric angle, and
enter the B-phase pulse to measure rotation direction.

Evaluate inverter motor efficiency and loss

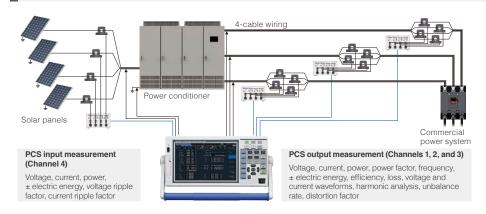
Evaluate efficiency and loss for an inverter, motor, and overall system by simultaneously measuring the inverter's input and output power and the motor's output. You can also create an efficiency map or loss map in MATLAB using measurement results recorded by the PW3390 at each operating point.*MATLAB is a registered trademark of Mathworks, Inc.

Example of an efficiency map display in MATLAB 50 40 (EX) 90 90 91 90 91 88

Speed(rpm)

6000

8000


Transfer to Data Logger via Bluetooth® wireless technology

Connect the PW3390 and a data logger (with support of LR8410 Link) via Bluetooth® wireless technology to wirelessly transmit 8 parameters of measurement values from the PW3390 to the data logger. In addition to the voltage, temperature, humidity, and other parameters measured by the multichannel data logger, you can also integrate the measurement values of the PW3390 and observe and record them in real time

^{*} Connection requires the serial - (Bluetooth® wireless technology) conversion adapter and power supply adapter recommended by Hioki. Please inquire with your Hioki distributor.

Measure the Efficiency of PV Power Conditioners (PCS)

Key features

- 4 built-in channels, standard. Simultaneously measure the I/O characteristics of power conditioners.
- Current sensors can measure even large currents with high accuracy. Reliable confirmation of wiring with vector diagrams.
- Measure the amount of power sold/ purchased from power conditioner output on interconnected systems with a single unit.
- DC mode integration function, which responds quickly to input fluctuations such as with solar power, built in.
- Measure ripple factor, efficiency, loss, and all other parameters that are required for the measurement of power conditioners for solar power with a single unit.

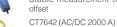
HIOKI's Current Measurement Solutions for Large Currents of 1000 A or More

Introducing a lineup of sensors taking measurements up to 6000 A for 50 Hz/60 Hz, and up to 2000 A for direct current. The CT9557 SENSOR UNIT lets you add the output waveforms from multiple high accuracy sensors. Use multi-cable wiring lines to take highly accurate measurements of up to 8000 A.

			Blue: High accuracy ser	nsor Black: Normal sensors	
Recommended current sensor by measurement target		DC powe	System power 50 Hz/60 Hz	Inverter secondary power	
Cinala aabla	1000 A or less		CT6876A or CT6846A		
Single-cable or bundled wiring	2000 A or less	CT6877A or CT7742	CT6877A or CT7642	CT6877A	
wiring	6000 A or less	_	CT7044/CT7045/CT7046	_	
2 ooble wiring	2000 A or less	CT9557+CT6876A×2 or CT9557+CT6846A×2			
2-cable wiring	4000 A or less	CT9557+CT6877A×2			
3-cable wiring	3000 A or less	CT9557+CT6876A×3 or CT9557+CT6846A×3			
	6000 A or less	CT9557+CT6877A×3			
4 coble wiring	4000 A or less	CT9557+CT6876A×4 or CT9557+CT6846A×4			
4-cable wiring	8000 A or less	CT9557+CT6877A×4			

CT6876A (AC/DC 1000 A) Pass-through type; Wideband, high accuracy

CT6877A (AC/DC 2000 A) Pass-through type; Wideband, high accuracy

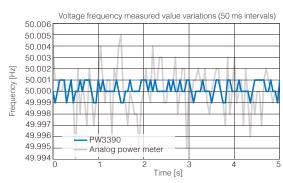

CT6846A (AC/DC 1000 A) Easy-connect clamp type

Add waveforms from multiple current sensors

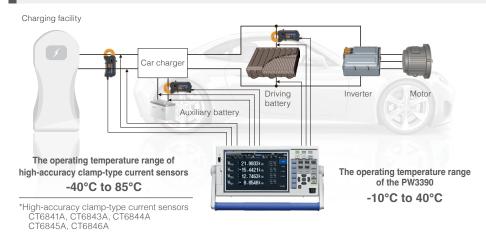
CT7742 (AC/DC 2000 A) Stable measurement of DC without zero

Wider frequency characteristics than the

CT7044/ CT7045/ CT7046 (AC 6000 A) Flexible, for easy connections even in narrow


Support for PCS Parameters

Simultaneously display the parameters required for PCS, such as efficiency, loss, DC ripple factor, and 3-phase unbalance rate. Easily check the required measured items for improved test efficiency. By matching the measurement synchronization source for both input and output, you can perform DC power measurements that are synchronized with the output AC as well as stable efficiency measurements.

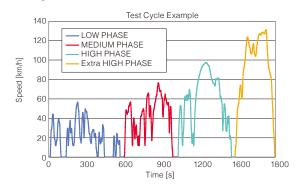

±0.01 Hz* Basic Accuracy for Voltage **Frequency Measurements**

Perform the frequency measurements that are required for various PCS tests with industry-leading accuracy and stability. Take highly accurate frequency measurements on up to 4 channels simultaneously, while also measuring other parameters at the same time.

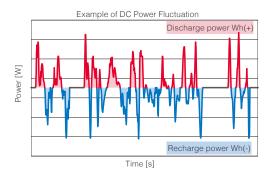
* If you require even higher accuracy for frequency, please inquire with your local Hioki distributor.

Test Automobile Fuel Economy

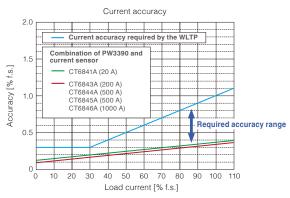
Key features


- Accurately measure recharge and discharge power with excellent basic accuracy and DC accuracy.
- 4 built-in channels, standard. Support for multiple recharge and discharge measurements, including auxiliary batteries.
- Easily achieve highly accurate measurements with clamp sensors, which can be used in a wide range of operating temperatures.
- Perform the -7°C low temperature test (WLTP standards) in the same environment as the automobile.

Scan QR Code to Watch Video Illustrating Fuel Economy Evaluation of an Automobile

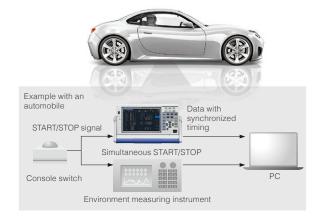

Evaluate WLTC Mode Performance - A New Fuel Economy Standard

Taking fuel economy measurements that comply with WLTP standards requires the precise measurement of current integration and power integration for the recharging/discharging of each battery in the system. High accuracy clamp current sensors, the excellent DC accuracy of the PW3390, and the ability to integrate current and power at 50 ms intervals are extremely effective in meeting this application. Furthermore, the operating temperature range of the PW3390 has now been extended to reach -10°C, enabling the WLTP measurement in -7°C environments.


Current and Power Integration Function by Polarity

DC integration measurement integrates the recharging power and discharging power by polarity for every sample at 500 kS/s, and measures positive-direction power magnitude, negative-direction power magnitude, and the sum of positive- and negative-direction power magnitude during the integration period. Accurate measurement of recharging power and discharging power is possible even if there is rapid repetition of battery recharging/discharging.

High-accuracy Current Sensors That Are Ideal for Vehicle Measurement

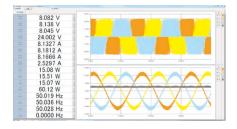

Clamp-type current sensors satisfy the current accuracy requirements imposed by the WLTP, as illustrated in the graph below. Sensors can be easily affixed without cutting cables in circuits under measurement, and they're available with a broad range of ratings (20 A to 1000 A) so that you can choose the right model based on vehicle type and measurement locations.

f.s. = Current sensor's rated current (If using a current sensor with a rated current of 500 A, 100% f.s. is 500 A.)

Link to Peripheral Devices via External Control

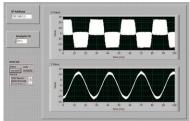
Use external control terminals to START/STOP integration and capture screen shots. This makes it easy to control operations from console switches and link to the timing of other instruments when measuring the performance of an actual automobile.

External Appearance



Software

Download software, drivers, and the Communications Command Instruction Manual from the Hioki website. https://www.hioki.com


PC Communication Software – PW Communicator

PC Communicator is a free application that connects to the PW3390 via a communications interface (LAN, RS-232C, or GP-IB), making it easy to configure the instrument's settings and to monitor or save measured values and waveform data from a computer. The software can simultaneously connect to up to 8 Hioki power measuring instruments, including the PW3390, Power Analyzer PW6001, Power Meter PW3335, PW3336, and PW3337, and it can provide integrated control over multiple models. The software can also be used to simultaneously save measurement data on the computer and calculate efficiency between instruments.

LabVIEW driver

Use the bundled LabVIEW driver to build a measurement system via a simple programming interface that lets you place icons on a window and connect them with lines. Multiple sample programs for configuring settings and downloading data are available, so you can get started right away.

*LabVIEW is a registered trademark of National Instruments.

GENNECT One SF4000

The SF4000 is a free application software that lets you display and save measurement data on a PC in real-time after connecting the PW3390 to the PC via Ethernet.

The application is also compatible with other Hioki measuring instruments such as Memory HiLogger LR8450 and the Wireless Logging Station LR8410, letting you connect up to 30 units at the same time to monitor, graph and display lists of measured values from multiple instruments all at once and in real-time. This is especially effective for performing a total analysis of power, temperature and other factors of equipment.

Remote control using an web browser

Use the PW3390's HTTP server function to connect to a computer via a LAN interface. You can configure settings or check data from a remote location using a virtual control panel that is displayed in the browser window.

Power analyzer lineup

		<u> </u>			
Model		PW6001	PW8001+U7005	PW8001+U7001	PW3390
	Applications	For measurement of high-efficiency IGBT inverters	For measurement of SiC and GaN inverters and reactor/transformer loss	For measurement of high-efficiency IGBT inverters and solar inverters	Balance of high accuracy and portability
	Appearance				
	Measurement frequency band	DC, 0.1 Hz to 2 MHz	DC, 0.1 Hz to 5 MHz	DC, 0.1 Hz to 1 MHz	DC, 0.5 Hz to 200 kHz
	Basic accuracy for 50/60 Hz power	±(0.02% of reading + 0.03% of range)	±(0.01% of reading + 0.02% of range)	±(0.02% of reading + 0.05% of range)	±(0.04% of reading + 0.05% of range)
	Accuracy for DC power	±(0.02% of reading + 0.05% of range)	±(0.02% of reading + 0.03% of range)	±(0.02% of reading + 0.05% of range)	±(0.05% of reading + 0.07% of range)
	Accuracy for 10 kHz power	±(0.15% of reading + 0.1% of range)	±(0.05% of reading + 0.05% of range)	±(0.2% of reading + 0.05% of range)	±(0.2% of reading + 0.1% of range)
	Accuracy for 50 kHz power	±(0.15% of reading + 0.1% of range)	±(0.15% of reading + 0.05% of range)	±(0.4% of reading + 0.1% of range)	±(0.4% of reading + 0.3% of range)
ters	Number of power measurement channels	1 to 6 channels, a specify when ordering		specify U7001 or order (mixed available)	4 channels
ame	Voltage, current ADC sampling	18-bit, 5 MHz	18-bit, 15 MHz	16-bit, 2.5 MHz	16-bit, 500 kHz
n tpara	Voltage range	6 V/15 V/30 V/60 V/150 V/ 300 V/600 V/1500 V	6 V/15 V/30 V/60 V/150	V/ 300 V/600 V/1500 V	15 V/30 V/60 V/150 V/ 300 V/600 V/1500V
Measuremen tparameters	Current range	Probe 1: 100 mA to 2000 A (6 ranges, based on sensor) Probe 2: 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V	100 mA to 2000 A (6 ranges, based on sensor)	Probe 1: 100 mA to 2000 A (6 ranges, based on sensor) Probe 2: 100 mV, 200 mV, 500 mV, 1 V, 2 V, 5 V	100 mA to 8000 A (6 ranges, based on sensor)
	Common-mode voltage rejection ratio	50/60 Hz: 100 dB or greater 100 kHz: 80 dB typical	50/60 Hz: 120 dB or greater 100 kHz: 110 dB or greater	50/60 Hz: 100 dB or greater 100 kHz: 80 dB typical	50/60 Hz: 80 dB or greater
	Temperature coefficient	0.01%/°C	0.01	%/°C	0.01%/°C
	Voltage input method	Photoisolated input, resistor voltage division	Photoisolated input, resistor voltage division	Isolated input, resistor voltage division	Isolated input, resistor voltage division
	Current input method	Isolated input from current sensor	Isolated input fro	m current sensor	Isolated input from current sensor
	External current sensor input	Yes (ME15W, BNC)	Yes (ME15W)	Yes (ME15W, BNC)	Yes (ME15W)
	Power supplied to external current sensor	Yes		es	Yes
	Data update rate Maximum input voltage	10 ms, 50 ms, 200 ms 1000 V,±2000 V peak (10 ms)	1 ms, 10 ms, 1 1000 V,±2000 V peak	50 ms, 200 ms 1000 V AC, 1500 V DC,	50 ms 1500 V, ±2000 V peak
Voltage input	Maximum rated	600 V CAT III	600 V CAT III	±2000 V peak 600 V AC/1000 V DC CAT III	600 V CAT III
ysis	line-to-ground voltage Number of motor analysis channels	1000 V CAT II Maximum 2 motors*1	1000 V CAT II	1000 V AC/1500 V DC CAT II 4 motors*1	1000 V CAT II Maximum 1 motors*1
Analys	Motor analysis input format	Analog DC, frequency, pulse		equency, pulse	Analog DC, frequency, pulse
_ ⋖	Current sensor phase shift calculation	Yes	Yes (auto)		Yes
	Harmonics measurement	Yes (6, for each channel)		ach channel)	Yes
	Maximum harmonics analysis order	100th		Oth	100th
	Harmonics synchronization frequency range	0.1 Hz to 300 kHz	0.1 Hz to 1.5 MHz	0.1 Hz to 1 MHz	0.5 Hz to 5 kHz
	IEC harmonics measurement	Yes	Ye	S*2	-
tion	IEC flicker measurement	-	Ye	S*2	-
Function	FFT spectrum analysis	Yes (DC to 2 MHz)	Yes*2 (DC ~ 4 MHz)	Yes*2 (DC ~ 1 MHz)	Yes (DC to 200 kHz)
	FFT analysis items	U, I, torque (analog), RPM (analog)		log), RPM (analog)	U, I, torque (analog), RPM (analog)
	User-defined calculations	Yes (A V V A)		es V V A V	You (A V)
	Delta conversion	Yes (Δ-Y, Y-Δ) Yes*1 20 ch	Yes (Δ	-Y, Y-Δ)	Yes (Δ-Y) Yes*1 16 ch
	D/A output	(waveform output, analog output)	Yes*1 20 ch (waveform	output, analog output)	(waveform output, analog output)
Display	Display	9" WVGA TFT color LCD	10.1" WVGA	ΓFT color LCD	9" WVGA TFT color LCD
Dis	Touch screen	Yes	Y	es	-
	External storage media	USB 2.0	USE	3 3.0	USB 2.0, CF card
	LAN (100BASE-TX, 1000BASE-T)	Yes	Yes		Yes (10BASE-T and 100BASE-TX only)
ace	GP-IB	Yes		es	Yes (maximum 38,400 bps)
Interface	RS-232C	Yes (maximum 230,400 bps)	,	Yes (maximum 115,200 bps)	
트	External control	Yes		es Linetrumente)	Yes (up to 8 instruments)
	Synchronization of multiple instruments	- Yes	` '	l instruments)	Yes (up to 8 instruments)
	Optical link CAN or CAN FD	res -		S*1	-
Din	nensions, weight (WxHxD)	430 mm (16.93 in.) × 177 mm (6.97 in.) × 450 mm (17.72 in.) 14 kg (493.84 oz.)	430 mm (16.93 in.) × 221 mm	(8.70 in.) × 361 mm (14.21 in.))3.84 oz.)	340 mm (13.39 in.) × 170 mm (6.69 in.) × 156 mm (6.14 in.) 4.6 kg (162.26 oz.)
		3,			, ,

Specifications

Basic Specifications

Accuracy guaranteed for 6 months (and 1.25 times specified accuracy for one year)

Measurement line type	(3P3W2M, 3P3V			re (1P3W), 3-pha	ise 3-wire
	(61 6112.111, 61 61	CH1	CH2	CH3	CH4
	Pattern 1	1P2W	1P2W	1P2W	1P2W
	Pattern 2	1P:		1P2W	1P2W
	Pattern 3	3P3\		1P2W	1P2W
	Pattern 4	1P:	3W	1P	3W
	Pattern 5	3P3\	W2M	1P	3W
	Pattern 6	3P3\	W2M	3P3	W2M
	Pattern 7		3P3W3M		1P2W
	Pattern 8		3P4W		1P2W
Number of input channels	Voltage: 4 chann	nels U1 to U4. Ci	urrent: 4 channe	els I1 to I4	
Measurement input	Voltage: Plug-in				
erminal type	Current: Dedicat	ted custom conn	ectors (ME15W))	
nput methods	Voltage: Isolated				
	Current: Insulate			ut)	
Voltage range	15 V/30 V/60 V/1 (Selectable for e			UTO range avai	lable.)
Current range	2 A / 4 A / 8 A / 2				9272-05, 20 A
-	0.04 A / 0.08 A /	0.2 A / 0.4 A / 0.		(2 A sen	sor)
(): Sensor used	0.4 A / 0.8 A / 2 / 4 A / 8 A / 20 A /			(20 A se (200 A s	
	40 A / 80 A / 200			(2000 A	
	0.1 A / 0.2 A / 0.5	5 A / 1 A / 2 A / 5	A	(5 A sen	sor)
	1 A / 2 A / 5 A / 1 10 A / 20 A / 50 /			(50 A se (500 A s	
	20 A / 40 A / 100			(1000 A	
	400 A / 800 A / 2	2 kA		CT7642	and CT7742)
	400 A / 800 A / 2	2 KA / 4 KA / 8 KA		(CT7044 and CT7	I, CT7045, (046)
	400 A / 800 A / 2			(100 uV/	A sensor)
	40 A / 80 A / 200			(1 mV/A	sensor)
	4 A / 8 A / 20 A / 0.4 A / 0.8 A / 2 /				A sensor) /A sensor)
	(Selectable for e				
Power range	0.6000 W to 90.0			ly by the combin	ation of voltage
	range, current ra	ange, and measi	urement line.		
Effective measuring	Voltage, Current	t, Power: 1% to 1	10% of the rang	e	
range	Voltage Current	Bower: from 70	ro ounnroccion	rongo cotting to	1200/
Total display area	Voltage, Current		ero-suppression	range setting to	120%
Zero-suppression ranges	Selectable OFF, When OFF, non-		be displayed e	ven with no mea	surement input
Zero adjustment	Voltage: Zero-ad				
	Current: Zero-ad	justment comper	nsation of input o	ffset at or below:	±10% f.s. ±4 mV
Waveform peak	Within ±300% of	f each voltage ar	nd current range	•	
measurement range	Marilla Con f				
Waveform peak measurement accuracy	Within ±2% f.s. of voltage and current display accuracy				
Crest factor			ve voltage/curre	nt input) (for 150	0 V range: 133)
	300 (relative to minimum effective voltage/current input) (for 1500 V range: 133) 3 (relative to voltage/current range rating) (for 1500 V range: 1.33)				
Input resistance	Voltage input section : 2 MΩ ±40 kΩ (differential input and insulated input)				
(50 Hz/60 Hz)	Current sensor input section : 1 MΩ ±50 kΩ				
Maximum input voltage	Voltage input section : 1500 V, ±2000 Vpeak Current sensor input section : 5 V, ±10 Vpeak				
Maximum rated voltage					
to earth	Measurement ca	ategories III 600	V (anticipated tr		
	Measurement ca				
Measurement method	Simultaneous di zero-crossing ca			rrent, simultaned	ous
Sampling	500 kHz/16 bit	alculation metric	<u> </u>		
Measurement	DC, 0.5 Hz to 20	IN kHz			
frequency range	0.5 112 10 20	O KI IZ			
Synchronization	0.5 Hz to 5 kHz				
requency range	Selectable lower	limit measureme	ent frequency (0.5	5 Hz/1 Hz/2 Hz/5	Hz/10 Hz/20 Hz
Synchronization source	U1 to U4, I1 to I4	, Ext (with the m	otor evaluation i	nstalled model a	nd CH B set for
	pulse input), DC (50 ms or 10	0 me fived			
	Selectable for ea		it channel (U/I fo	r each channel n	neasured using
	the same synchr	onization source	e)		_
	The zero-crossing Two filter levels (any matches the o	aigitai LPF when l	or i is selected
	Operation and ac	curacy are undete			
	Operation and a		rmined when U	or I is selected a	nd measured
Data and the last	input is 30% f.s.	oi above.			
Data update interval	50 ms				
LPF	OFF/500 Hz/5 kl 500 Hz: Accurac				
	5 kHz: Accuracy	defined at 500 l	Hz or below		
	100 kHz: Accura			Add 1% rdg. at or	above 10 kHz
Zero-crossing filter	Off, mild or stror	ng			
Polarity discrimination	Voltage/current			n method	
	Zero-crossing fil	ter provided by	digital LPF		
Basic measurement	Frequency, RMS				
parameters	AC component, v				
	voltage waveform voltage ripple fac				
	rectification RMS	equivalent, curre	ent AC componen	it, current simple a	average, current
	fundamental wav				
	 current total has active power, app 				
	current phase an	gle, power phase	angle, positive-d	lirection current m	agnitude,
	negative-direction magnitude, positi				
	sum of positive- a				
			,	,	
	(PW3390-03)				
		m motor nower	elin		
	Motor torque, rp		-		
Voltage/current rectification method		tage and curren	t values to use f	or calculating ap	parent and

Display resolution	99,999 counts (other than 999,999 counts (Integrate			
Accuracy		Voltage (U)	Current (I)	
	DC	±0.05% rdg. ±0.07% f.s.	±0.05% rdg. ±0.07% f.:	
	0.5 Hz ≤ f < 30 Hz	±0.05% rdg. ±0.1% f.s.	±0.05% rdg. ±0.1% f.s.	
	30 Hz ≤ f < 45 Hz	±0.05% rdg. ±0.1% f.s.	±0.05% rdg. ±0.1% f.s.	
	45 Hz ≤ f ≤ 66 Hz	±0.04% rdg. ±0.05% f.s.	±0.04% rdg. ±0.05% f.:	
	66 Hz < f ≤ 1 kHz	±0.1% rdg. ±0.1% f.s.	±0.1% rdg. ±0.1% f.s.	
	1 kHz < f ≤ 10 kHz	±0.2% rdg. ±0.1% f.s.	±0.2% rdg. ±0.1% f.s.	
	10 kHz < f ≤ 50 kHz	±0.3% rdg. ±0.2% f.s.	±0.3% rdg. ±0.2% f.s.	
	50 kHz < f ≤ 100 kHz	±1.0% rdg. ±0.3% f.s.	±1.0% rdg. ±0.3% f.s.	
	100 kHz < f ≤ 200 kHz	±20% f.s.	±20% f.s.	
		Active power (P)	Phase difference	
	DC	±0.05% rdg. ±0.07% f.s.	-	
	0.5 Hz ≤ f < 30 Hz	±0.05% rdg. ±0.1% f.s.	±0.08°	
	30 Hz ≤ f < 45 Hz	±0.05% rdg. ±0.1% f.s.	±0.08°	
	45 Hz ≤ f ≤ 66 Hz	±0.04% rdg. ±0.05% f.s.	±0.08°	
	66 Hz < f ≤ 1 kHz	±0.1% rdg. ±0.1% f.s.	±0.08°	
	1 kHz < f ≤ 10 kHz	±0.2% rdg. ±0.1% f.s.	±(0.06*f+0.02)°	
	10 kHz < f ≤ 50 kHz	±0.4% rdg. ±0.3% f.s.	±0.62°	
	50 kHz < f ≤ 100 kHz	±1.5% rdg. ±0.5% f.s.	±(0.005*f+0.4)°	
	100 kHz < f ≤ 200 kHz	±20% f.s.	±(0.022*f-1.3)°	
Conditions of juaranteed accuracy	Values of f in above tables are given in kHz. Accuracy figures for DC voltage and current are defined for Udra and Idc, while accuracy figures for frequencies other than DC are defined for Umra and Irms. Accuracy figures for voltage and current are defined for Udra and Idc, while accuracy figures for requencies other than DC are defined for Umra and Irms. Accuracy figures for voltage difference values are defined for full-scale input with a power factor of zero and the LPF disabled. Accuracy figures for voltage, current, and active power values in the frequency range of 0.5 Hz to 10 Hz are provided as reference values. Accuracy figures for voltage and active power values in excess of 220 V in the frequency range of 10 Hz to 16 Hz are provided as reference values. Accuracy figures for voltage and active power values in excess of (22,000f [kHz]) V in the frequency range of 30 Hz to 100 kHz are provided as reference values. Accuracy figures for voltage and active power values in excess of 1000 V are provided as reference values. Accuracy figures for voltage and active power values in excess of 1000 V are provided as reference values. Accuracy figures for voltage and active power values in excess of 1000 V are provided as reference values. Accuracy figures for voltage and active power values in excess of 1000 V are provided as reference values. Accuracy figures for voltage and active power values in excess of 1000 V are provided as reference values. Accuracy figures for voltage and active power values for the voltage in excess of 600 V, add the following to the phase difference accuracy: 500 Hz <1 ≤ 5 kHz:±0.5° 20 kHz <1 ≤ 200 kHz:±1° Add =20 µV to the DC current and active power accuracy (at 2 V f.s.) Add current sensor accuracy to above accuracy figures for current, active power, and phase difference. Note that separate combination accuracy figures are defined for current measurement options (see pages 16 to 18 of the current sensor specifications). Apply LPF accuracy definitions to the above acc			
Temperature coefficient	the synchronization ±0.01% rdg./°C (for DC, a			
		00 V @50 Hz/60 Hz applied	between voltage	
voltage Magnetic field interference	measurement jacks and ch	assis) m magnetic field, DC and 5	0 Hz/60 Hz)	
Power factor influence		cos (¢+Phase difference ac		
		Phase difference accuracy		
Susceptibility	@3 V, current and active	power not more than ±6% f.	S.,	
to conducted	where f.s. current is the rated primary-side current of the current sensor f.s. active power equals the voltage range x the rated primary-side current of th			
electromagnetic field	current sensor	ie voltage range x trie rated	a primary-side current of t	
Susceptibility		ive power not more than ±6	% f.s.,	
to radiated	where f.s. current is the ra	ated primary-side current of	the current sensor	
electromagnetic field	f.s. active power equals the current sensor	ne voltage range x the rated	primary-side current of	
2. Freguency Mea	surement Specificati	ons		
Measurement channels				
Measurement source	Select U/I for each measu	rement channel		
Measurement method		o-crossing sample value co	rrection	
Measuring range		Hz to 5 kHz (with "0.0000 Hz" o		
Lower limit	0.5 Hz/1 Hz/2 Hz/5 Hz/10			
measurement frequency				
		quency-dependent at 45 Hz		
Data update interval			the renge of 45 Ha to 66 H	
	±0.01 Hz (during voltage fre	equency measurement within	the range of 45 Hz to 66 H	
	±0.05% rdg., ±1 dgt. (under	other conditions)		
Data update interval Accuracy Numerical display	±0.05% rdg., ±1 dgt. (under With sine wave of at least 3	other conditions) 0% of the measurement sour 0.900 Hz to 99.999 Hz, 99.0	ce's measurement range	

-3 Integration Measurement Specifications

Measurement mode	Selectable between RMS or DC for each wiring mode
Measurement items	Current integration (lh+, lh-, and lh), active power integration (WP+, WP-, and WP) lh+ and lh- only for DC mode measurements, and lh only for RMS mode measurements
Measurement method	Digital calculation from each current and active power phase (when averaging, calculates with previous average value) In DC mode: calculates current value at every sample, and integrates instantaneous power independent of polarity In RMS mode: Integrates current effective values between measurement intervals, and polarity-independent active power value
Measurement interval	50 ms data update interval
Measuring range	Integration value: 0 Ah/Wh to ±9999.99 TAh/TWh Integration time: No greater than 9999h59m
Integration time accuracy	±50 ppm ±1 dgt. (-10°C to 40°C (14°F to 104°F))
Integration accuracy	± (current and active power accuracy) ± integration time accuracy
Backup function	Integration automatically resumes after power outages.
-4. Harmonic Meas	urement Specifications
Number of	4 channels

Number of 4 channels

Harmonic measurements not available for multiple systems with different frequencies.

Hearmonic rms voltage, harmonic voltage percentage, harmonic voltage phase angle,

Harmonic measurements not available for multiple systems with offerent frequencies. Harmonic may voltage, harmonic voltage percentage, harmonic voltage phase angle, harmonic active power, harmonic power percentage, harmonic current phase angle, harmonic active power, harmonic power percentage, harmonic voltage-current phase difference, total harmonic voltage distortion, total harmonic current distortion, voltage unbalance factor, current unbalance factor

	voltage unbalance factor, cui	rent unbalance fac	ctor	
Measurement method	Zero-crossing synchronous calculation (all channels in same window), with gap Fixed 500 kS/s sampling, after digital anti-aliasing filter Equal thinning between zero crossings (with interpolation calculation)			
Harmonic sync source	U1 to U4, I1 to I4, External (with motor analysis and CH B set for pulse input), DC selectable (50 ms or 100 ms)			
FFT calculation word length	32 bits			
Anti-aliasing filter	Digital filter (automatically	set based on synd	chronization freque	ncy)
Windows	Rectangular			
Synchronization frequency range	As specified for power mea	surements		
Data update interval	50 ms (measurement-frequ	ency-dependent	at 45 Hz and below	v)
Phase zero adjustment	Provided by key operation or external control command (only with external sync source) Automatic or manual configuration of phase zero-adjustment values Phase zero-adjustment setting range: 0.00° to ±180.00° (in 0.01° increments)			
THD calculation	THD-F/THD-R			
Highest order analysis and window waveforms				
	Synchronization frequency range	Window waveforms	Analysis order	
	0.5 Hz ≤ f < 40 Hz	1	100th	
	40 Hz ≤ f < 80 Hz	1	100th]
	80 Hz ≤ f < 160 Hz	2	80th]
	160 Hz ≤ f < 320 Hz	4	40th	
	320 Hz ≤ f < 640 Hz	8	20th	
	640 Hz ≤ f < 1.2 kHz	16	10th	
	1.2 kHz < f < 2.5 kHz	32	5th	
Accuracy	2.5 kHz ≤ f < 5.0 kHz Frequency	Voltage(U), Co	3th rrent(I), Active Pov	wer(P)
	0.5 Hz ≤ f < 30 Hz	±0.4% rdg. ±0	.2% f.s.	
	30 Hz ≤ f ≤ 400 Hz	±0.3% rdg. ±0	.1% f.s.	
	400 Hz < f ≤ 1 kHz	±0.4% rdg. ±0	.2% f.s.	
	1 kHz < f ≤ 5 kHz	±1.0% rdg. ±0	.5% f.s.	
	5 kHz < f ≤ 10 kHz	5 kHz < f ≤ 10 kHz ±2.0% rdg. ±1.0% f.s.		
	10 kHz < f ≤ 13 kHz	±5.0% rdg. ±1		
		d for sync frequencies of 4.3 kHz and higher accuracy to the above when using LPF.		
E Niche Manne				

-5. Noise Measurement Specifications

Calculation channels	1 (Select one from CH1 to CH4)
Calculation items	Voltage noise/Current noise
Calculation type	RMS spectrum
Calculation method	Fixed 500 kS/s sampling, thinning after digital anti-aliasing filter
FFT calculation word length	32 bits
FFT data points	1000/5000/10,000/50,000 (according to displayed waveform recording length)
Anti-aliasing filter	Automatic digital filter (varies with maximum analysis frequency)
Windows	Rectangular/Hanning/flat-top
Data update interval	Determined by FFT points within approx. 400 ms, 1 s, 2 s, or 15 s, with gap
Highest analysis frequency	200 kHz/50 kHz/20 kHz/10 kHz/5 kHz/2 kHz
Frequency resolution	0.2 Hz to 500 Hz (Determined by FFT points and maximum analysis frequency)
Noise amplitude	Calculates the ten highest level and frequency voltage and current FFT peak
measurement	values (local maxima).
Lower limit noise frequency	0 kHz to 10 kHz
6 Motor Apolysis	Charifications (Madel DW/2200 02)

-6. Motor Analysis Specifications (Model PW3390-03)

Number of input	3 channels
channels	CH A: Analog DC input/Frequency input (selectable)
Charmers	CH B: Analog DC input/Pulse input (selectable)
	CH Z: Pulse input
Measurement input	Insulated BNC jacks
terminal type	
Input impedance (DC)	1 MΩ ±100 kΩ
Input methods	Isolated and differential inputs (not isolated between channels B and Z)
Measurement items	Voltage, torque, rotation rate, frequency, slip, and motor power
Synchronization source	U1 to U4, I1 to I4, Ext (with CH B set for pulse input), DC (50 ms/100 ms)
,	Common to channels A and B
Measurement	f1 to f4 (for slip calculations)
frequency source	, , , , , , , , , , , , , , , , , , ,
Maximum input voltage	±20 V (during analog, frequency, and pulse input)
Maximum rated voltage to earth	50 V (50 Hz/60 Hz)

(1). Analog DC Input (CH A/CH B)

Measurement range	±1 V, ±5 V, ±10 V (when inputting analog DC)
Valid input range	1% to 110% f.s.
Sampling	10 kHz/16 bits
Response time	1 ms (measuring zero to full scale, with LPF off)
Measurement method	Simultaneous digital sampling and zero-crossing synchronous calculation system (cumulative average of intervals between zero crossings)
Measurement accuracy	±0.08% rdg. ±0.1% f.s.
Temperature coefficient	±0.03% f.s./°C
Effect of common mode voltage	Not more than $\pm 0.01\%$ f.s. (with 50 V [DC or 50 Hz/60 Hz] between measurement jacks and PW3390 chassis)

Effect of external magnetic field	Not more than ±0.1% f.s. (at 400 A/m DC and 50 Hz/60 Hz magnetic fields)
LPF	OFF/ON (OFF: 4 kHz, ON: 1 kHz)
Total display area	Zero-suppression range setting ±120%
Zero adjustment	Zero-corrected input offset of voltage ±10% f.s. or less
Scaling	0.01 ~ 9999.99
Unit	CH A: V, N+ m, mN+ m, kN+ m, CH B: V, Hz, r/min

(2). Frequency Input (CH A only)

±5 V peak (5 V symmetrical, equivalent to RS-422 complementary signal)
100 kHz
1 kHz to 100 kHz
According to synchronization source
±0.05% rdg., ±3 dgt.
1.000 kHz to 99.999 kHz
Select fc and fd for frequency range fc \pm fd [Hz] (frequency measurement only) 1 kHz to 98 kHz in 1 kHz units, where fc + fd < 100 kHz and fc - fd > 1 kHz
1 ~ 999
Hz, N _* m, mN _* m, kN _* m

(3). Pulse Input (CH B only)

Detection level	Low: 0.5 V or less; High: 2.0 V or more
Measurement range	1 Hz to 200 kHz (at 50% duty)
Division setting range	1 ~ 60000
Measurement frequency range	0.5 Hz to 5.0 kHz (limited to measured pulse frequency divided by selected no. of divisions)
Minimum detectable pulse width	2.5 μ s or more
Measurement accuracy	±0.05% rdg., ±3 dgt.
Motor poles	2 ~ 98
Max. measurement frequency	100 Hz, 500 Hz, 1 kHz, 5 kHz
Pulse count	Integer multiple of half the number of motor poles, from 1 to 60,000
Unit	Hz, r/min

(4). Pulse Input (CH Z only)

Detection level	ow: 0.5 V or less; High: 2.0 V or more		
Measurement range	1 Hz to 200 kHz (at 50% duty)		
Minimum detectable pulse width	2.5 μ s or more		
	OFF/Z Phase/B Phase (clear counts of CHB in rising edge during Z Phase, detect polar code for number of rotations during B Phase)		

-7. D/A Output Option Specifications (Models PW3390-02 and PW3390-03)

ctable analog/waveform outputs log output lect a basic measurement item for each output channel. Output voltage or current measured waveforms. D-sub 15 bits) asurement accuracy ±0.2% f.s. (DC level)
log output lect a basic measurement item for each output channel. Output voltage or current measured waveforms. D-sub 15 bits) asurement accuracy ±0.2% f.s. (DC level)
Output voltage or current measured waveforms. D-sub 15 bits) asurement accuracy ±0.2% f.s. (DC level)
15 bits) asurement accuracy ±0.2% f.s. (DC level)
asurement accuracy ±0.2% f.s. (DC level)
Measurement accuracy ±0.5% f.s. (at ±2 V f.s.), f.s.) ynchronous frequency range)
ns (according to input data update interval of selected parameter) 500 kHz
V DC nom. (approx. ±12 V DC max.) ±2 V/±1 V switchable, crest factor of 2.5 or greater Setting applies to all channels.

-8. Display Specifications

Display type	9-inch TFT color LCD (800×480 dots)
	Measurement values: 200 ms (independent of internal data update interval) Waveforms, FFT: screen-dependent

-9. External Interface Specifications

(1). USB Interface (Functions)

Connector	Mini-B receptacle ×1	
Compliance standard	SB2.0 (Full Speed/High Speed)	
Class	Individual (USB488h)	
Connection destination	Computer (Windows10/Windows8/Windows7, 32bit/64bit)	
Function	Data transfer and command control	

(2). USB Memory Interface

Connector	USB type A connector ×1	
Compliance standard	JSB2.0	
USB power supply	00 mA maximum	
USB storage device support	USB Mass Storage Class	
Function	Save and load settings files, Save waveform data Save displayed measurement values (CSV format) Copy measurement values and recorded data (from CF card) Save waveform data Save FFT spectrum for noise measurement Save/load screenshots	

(3). LAN Interface

Connector	RJ-45 connector × 1
Compliance standard	IEEE 802.3 compliant
Transmission method	10BASE-T/100BASE-TX Auto detected
Protocol	TCP/IP
Function	HTTP server (remote operation), Dedicated port (data transfer and command control)

(4). CF Card Interface

Slot	One Type 1	
Compatible card	CompactFlash memory card (32 MB or higher)	
Supported memory capacity	Up to 2 GB	
Data format	MS-DOS format (FAT16/FAT32)	
Recordable content	Save and load settings files, Save waveform data Save displayed measurement values and auto-recorded data (CSV format) Copy measurements/recorded data (from USB storage) Save waveform data Save FFT spectrum for noise waveforms Save/load screenshots	

(5), RS-232C Interface

Method	RS-232C, [EIA RS-232D], [CCITT V.24], [JIS X5101] compliant	
Metriod	Full duplex, start-stop synchronization, 8-bit data, no parity, one stop bit	
	Hardware flow control. CR+LF delimiter	
Connector	D-sub9 pin connector ×1	
Communication speeds	9600 bps, 19,200 bps, 38,400 bps	
Function	Command control, Bluetooth® logger connectivity (simultaneous use not supported)	
(6). Synchronizatio	n Control Interface	
Signal contents	One-second clock, integration START/STOP, DATA RESET, EVENT	
Connector types	IN: One 9-pin female mini-DIN jack, OUT: One 8-pin female mini-DIN jack	
Signal	5 V CMOS	
Max. input	±20 V	
Max. signal delay	2 μs (rising edge)	
(7). External Contro	ol Interface	
Connector types	9-pin round connector x1; also used as synchronization control interface	
Electrical specifications	Logic signal of 0 V/5 V (2.5 V to 5 V), or contact signal (shorted/open)	
Function	Integration start, integration stop, data reset, event (the event set as the synchronization control function)	
	Cannot be used at the same time as synchronization control.	

Function Specifications -1. Control Functions

-1. Control Function	18
AUTO range function	Automatically selects voltage and current ranges according to measured amplitude on each phase. Operating states: Selectable on or off for each phase system Auto-ranging span: Wide/Narrow (common to all wiring systems)
Timing control function	Interval OFF/50 ms/100 ms/200 ms/500 ms/1 s/5 s/10 s/ 15 s/30 s/1 min/5 min/10 min/15 min/30 min/60 min Setting determines the maximum data-saving capacity Timing controls OFF/Timer/RTC Timer : 10 s to 9999:59:59 [h:m:s] (in seconds) Real-time clock: Start and stop times (in minutes)
Hold function	Stops all updating of displayed measurement values and waveforms, and holds display. Internal calculations such as integration and averaging, clock, and peak-over display continue to be updated.
Peak hold function	All measurement values are updated to display the maximum value for each measurement. Displayed waveforms and integration values continue to be updated with instantaneous values.

-2. Calculation Functions

Scaling calculation	VT(PT) ratio and CT ratio: OFF/0.01 to 9999.99
Average calculation	OFF/FAST/MID/SLOW/SLOW2/SLOW3 Exponentially averages all instantaneous measurement values including harmonics (but not peak, integration, or FFT noise values). Applied to displayed values and saved data. Response speed (time remains within specified accuracy when input changes from 0 to 100% f.s.) FAST: 0.2 s, MID: 1.0 s, SLOW: 5 s, SLOW2: 25 s, SLOW3: 100 s
Efficiency and loss calculations	
Δ-Y calculation	For 3P3W3M systems, converts between line-to-line voltage and phase voltage waveforms using a virtual center point. All voltage parameters including harmonics such as true rms voltage are calculated as phase voltage waveforms. U1s = (U1s-U3s)/3, U2s = (U2s-U1s)/3, U3s = (U3s-U2s)/3
Selecting the calculation method	TYPE1/TYPE2 (only valid when wiring is 3P3W3M) Select the calculation method used to calculate the apparent power and reactive power during 3P3W3M wiring. Only affect measurement values S123, Q123, ф123, λ123
Current sensor phase correction calculations	Compensation by calculating the current sensor's harmonic phase characteristics Correction points are set using frequency and phase difference (set separately for each wiring mode). Frequency: 0.001 kHz to 999.999 kHz (in 0.001 kHz increments) Phase difference: 0.00 °. to ±90.00 °. (in 0.01 °. increments) However, the time difference calculated from the frequency phase difference is limited to a maximum of 200 us in 5 ns increments.
-3. Display Functio	ns

Wiring Check screen

-3. Display Functions						
Wiring Check screen	The wiring diagram and voltage/current vectors are displayed for the selected wiring system(s). The correct range for the wiring system is shown on the vector display, to confirm proper measurement cable connections.					
Independent wiring system display mode	Displays power and harmonic measurement values for channels 1 to 4. A composite measurement line pattern is displayed for each system. Basic, voltage, current, and power measurement parameter, harmonic bar graph, harmonic list, and harmonic vector screens					
Display Selections screen	Select to display any 4, 8, 16, or 32 of the basic measurement parameters. Display layout: 4, 8, 16, or 32 parameters (4 patterns)					
Efficiency and Loss screen	The efficiency and loss obtained by the specified calculation formulas are displayed numerically. Three efficiency and three loss values.					
Waveform & Noise screen	Voltage and current waveforms sampled at 500 kHz and noise measurements are displayed compressed on one screen. Trigger: Synchronized with the harmonic sync source Recording length: 1000/5000/10,000/50,000 × All voltage and current channels Compression ratio: 11, 1/2, 1/5, 1/10, 1/20, 1/50 (peak-to-peak compression) Recording time:					
	Recording speed/ Recording length	1000	5000	10,000	50,000	
	500 kS/s	2 ms	10 ms	20 ms	100 ms	
	250 kS/s	4 ms	20 ms	40 ms	200 ms	
	100 kS/s	10 ms	50 ms	100 ms	500 ms	
	50 kS/s	20 ms	100 ms	200 ms	1000 ms	
	25 kS/s	40 ms	200 ms	400 ms	2000 ms	
	10 kS/s	100 ms	500 ms	1000 ms	5000 ms	

Trend screen	Display a time-sequence graph of measured values for basic measurement parameters that have been selected as trend display parameters. Waveforms are graphed using peak-peak compression of data refresh rate data based on the time axis setting. Data is not stored. Number of graphed parameters: Up to 8 Time axis: 1.5 / 3 / 6 / 12 / 30 s/div; 1 / 3 / 6 / 10 / 30 min./div.; 1 / 3 / 6 / 12 hour/div; 1 day/div. Vertical axis: Auto (configured so that the data in the screen display range fits on the screen) / semi-auto (user selects the zoom factor relative to the full-scale values for graphed parameters from the following: 1/8, 1/4, 1/2, x1, x2, x5, x10, x50, x100, x200, x500) /manual (user sets the maximum and minimum values for the display)
X-Y Plot screen	Select horizontal and vertical axes from the basic measurement items to display on the X-Y graphs. Dots are plotted at the data update interval, and are not saved. Drawing data can be cleared. Horizontal: 1 data item (gauge display available), Vertical: 2 data items (gauge display available)

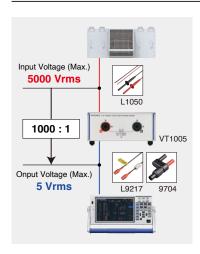
-4. Saving Functions

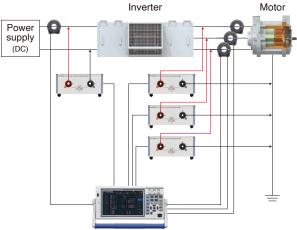
oarmig i amono.	
Auto-save function	As the items to be saved, select any measured values including harmonics and noise value data of the FFT function. The selected items are stored to CF card during every measurement interval. (Storage to USB memory is not available.) Can be controlled by timer or real-time clock. Max. no. of saved items: hierval-setting-dependent •50 ms: 1300 items • 100 ms: 260 items • 200 ms: 520 items •500 ms: 1300 items • 1 s: 2600 items • 5 s to 60 min: 5000 items Data format: CSV format
Manual saving function	, and the second
	 Measurement data As the items to be saved, select any measured values including harmonics and noise value data of the FFT function. Pressing the SAVE key saves each measurement value at that moment to the save destination. File format: CSV format
	Screen capture The COPY key captures and saves a bitmap image of the display to the save destination. This function can be used at an interval of 5 sec or more while automatic saving is in progress. File format: Compressed BMP format Settings data
	Settings information can be saved/loaded as a settings file. File format: SET format (for PW3390 only) *Waveform data Saves the waveform being displayed by means of [Wave/Noise] display. File format: CSV format
	 FFT data Save the noise measurement FFT spectrum shown on the Waveform/Noise screen. File format: CSV format

-5. Synchronous Control Function

Function	Synchronous measurements are available by using sync cables to connect Model PW3390 (primary/secondary). When internal settings match, auto-save is available while synchronized.
Synchronized items	Clock, data update interval (except for FFT calculations), integration start/stop, data reset, certain events
Event items	Hold, manual save, screen capture
Synchronization timing	Clock, data update interval Within 10 s after power-on by a secondary PW3390 Start/stop, data reset, event Upon key-press and communications operations on the primary PW3390
Synchronization delay	Maximum 5 μs per connection. Maximum synchronization delay of an event is +50 ms
-6. Bluetooth® Logo	per Connectivity

	Sends measured values wirelessly to logger by using a Bluetooth® serial conversion adapter.
Supported devices	Hioki LR8410 Link-compatible loggers (LR8410, LR8416)
Sent data	Measured values assigned to the D/A CH9 to CH16 analog output parameters

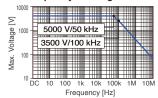

-7. Other Functions

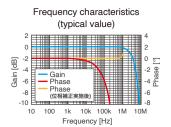

Display language selection	Japanese, English, Chinese
Beep sound	OFF/ON
Screen color schemes	COLOR1 (black)/2 (blue-green)/3 (blue)/4 (gray)/5 (navy blue)
Start-up screen selection	Wiring or Last-displayed screen (Measurement screens only)
LCD backlight	ON/1 min/5 min/10 min/30 min/60 min
CSV file format	CSV/SSV
Real-time clock function	Auto-calendar, leap-year correcting 24-hour clock
RTC accuracy	±3 s per day @25°C (77°F)
Sensor recognition	Current sensors are automatically recognized when connected (Excluding the CT7000 series sensors)
Warning indicators	When peak over occurs on voltage and current measurement channels, When no sync source is detected
	Warning indicators for all channels are displayed on all pages of the MEAS screen.
Key-lock	Toggles on/off by holding the ESC key for three seconds.
System reset	Returns all settings to factory defaults
Power-on reset	Returns all settings including language and communications settings, to factory defaults.
File operations	Media content list display, format media, create folders, delete files and folders, copy between storage media

General Specifications

Operating environment	Indoors, Pollution Degree 2, altitude up to 2000 m (6562.20 ft)
Operating temperature and humidity	Temperature: -10°C to 40°C (14°F to 104°F), Humidity: 80% RH or less (no condensation)
Storage temperature and humidity	-10°C to 50°C (14°F to 122°F), 80% RH or less (no condensation)
Dustproof and waterproof	IP20 (EN 60529)
Applicable standards	Safety EN 61010 EMC EN 61326 Class A
Power supply	100 V to 240 V AC, 50 Hz/60 Hz, Maximum rated power: 220 VA Anticipated transient overvoltage: 2500 V
Backup battery life	Clock, settings and integration values (Lithium battery), Approx. 10 years, @23°C (73°F)
Dimensions	340 mm (13.39 in) W x 170 mm (6.69 in) H x 156 mm (6.14 in) D (excluding protrusions)
Mass	4.6 kg (162.3 oz) with PW3390-03
Product warranty period	3 year
Accessories	Instruction Manual ×1, Measurement Guide ×1, Power cord ×1, USB cable (0.9 m (2.95 ft)) ×1, Input cord label ×2, D-sub connector ×1 (PW3390-02, PW3390-03)

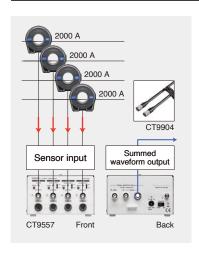
Measure High Voltages of up to 5000 V

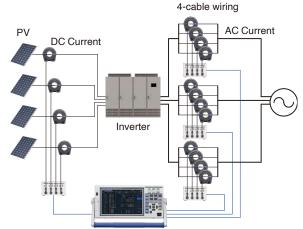



The AC/DC High Voltage Divider VT1005 divides and outputs voltages of up to 5000 V. With the PW3390, the VT1005 can accurately measure high voltages of up to 5000 V.

AC/DC HIGH VOLTAGE DIVIDER VT1005

Frequency derating curve





VT1005 specifications

•	
Maximum rated voltage	5000 V rms, ±7100 V peak (Provided this falls within the frequency derating curve illustrated)
Maximum rated voltage (line-to-ground)	No measurement category: 5000 V AC/DC (7100 V peak, Anticipated transient overvoltage 0 V) Measurement category II: 2000 V AC/DC (Anticipated transient overvoltage 12000 V) Measurement category III: 1500 V AC/DC (Anticipated transient overvoltage 10000 V)
Measurement accuracy	±0.08% (DC), ±0.04% (50 Hz/60 Hz), ±0.17% (50 kHz)
Frequency flatness	Band where amplitude falls within ±0.1% range: 200 kHz (typical) Band where phase falls within ±0.1° range: 500 kHz (typical) (*5)
Measurement bandwidth	DC to 4 MHz (Amplitude and phase accuracy specified up to 1 MHz)
Voltage dividing ratio	1000 : 1
Common-mode voltage rejection ratio (CMRR)	50 Hz/60 Hz: 90 dB (typical), 100 kHz: 80 dB (typical)
Operating temperature and humidity range	-10°C to 50°C (14°F to 122°F), 80% RH or less (non-condensing)
Power supply	100 V to 240 V AC (50/60 Hz)
Dimensions (W x H x D)	Approx. 195.0 × 83.2 × 346.0 mm (7.68 × 3.28 × 13.62 in.)
Weight	Approx. 2.2 kg (77.6 oz.)
Measurement method	Differential input
Included accessories	- L1050-01 Voltage Cord (1.6 m/ 5.25 ft) - L9217 Connection Cord (insulated BNC, 1.6 m/ 5.25 ft) - 9704 Conversion Adapter (insulated-female BNC-to-banana plug) - Power cord

Measure Large Currents of up to 8000 A

The Sensor Unit CT9557 adds and outputs current sensor output from multi-wire lines. With the PW3390, the CT9557 can be used to accurately measure large currents of up to 8000 A (on a 4-wire line).

SENSOR UNIT CT9557

CT9557 specifications

Connectable current sensor	Current sensors are lis	sted on p. 16 - p. 18*.		
	DC	: ±0.06% ±0.03%		
	~ 1 kHz	: ±0.06% ±0.03%		
Summed waveform	~ 10 kHz	: ±0.10%. ±0.03%		
output accuracy ±(% of reading + % of full	~ 100 kHz	: ±0.20% ±0.10%		
scale)	~ 300 kHz	: ±1.0% ±0.20%		
55410)	~ 700 kHz	: ±5.0% ±0.20%		
	~ 1 MHz	: ±10.0% ±0.50%		
Operating temperature and	-10°C to 50°C (14°F to 122°F),			
humidity	80% RH or less			
Power supply	100 V to 240 V AC (50 Hz/60 Hz)			
Output connector	HIOKI ME15W (male connector)			
Dimensions (W x H x D)	Approx. 116 mm W × 67 mm H × 132 mm D			
Dimensions (W X 11 X D)	(approx. 4.57 in. W × 2.64 in. H × 5.20 in. D)			
Weight	Approx. 420 g (14.8 oz.)			
Included accessories	AC ADAPTER Z1002, Power cord			

Wiring	Current	Using sensors
Single-cable	1000 A	CT6876A CT6846A
or bundled wiring	2000 A	CT6877A
2-cable	2000 A	CT9557+CT6876A×2/ CT9557+CT6846A×2
wiring	4000 A	CT9557+CT6877A×2
3-cable	3000 A	CT9557+CT6876A×3/ CT9557+CT6846A×3
wiring	6000 A	CT9557+CT6877A×3/
4-cable	4000 A	CT9557+CT6876A×4/ CT9557+CT6846A×4
wiring	8000 A	CT9557+CT6877A×4

wiinig	Ourrent	Using sensors
Single-cable	1000 A	CT6876A CT6846A
or bundled wiring	2000 A	CT6877A
2-cable	2000 A	CT9557+CT6876A×2/ CT9557+CT6846A×2
wiring	4000 A	CT9557+CT6877A×2
3-cable	3000 A	CT9557+CT6876A×3/ CT9557+CT6846A×3
wiring	6000 A	CT9557+CT6877A×3/
4-cable	4000 A	CT9557+CT6876A×4/ CT9557+CT6846A×4
wiring	8000 A	CT9557+CT6877A×4

CONNECTION CABLE CT9904 Cable length: 1 m (3.28 ft) CT9904 required to connect to PW3390.

^{*}When connecting CT7642, CT7742, CT7044, CT7045, CT7046, optional conversion cable CT9920 is required.

Current sensors High accuracy clamp

			CT6831	CT6830	
Ар	ppearance	NEW		NEW	
Ra	ated current		20 A AC/DC	2 A AC/DC	
Frequency band		DC to 100 kHz		DC to 100 kHz	
Dia	ameter of measurable conductors	Max. φ 5 mm (0.20 in.)		Max. φ 5 mm (0.20 in.)	
	U7001 Current (I) Combined Active power (P)	U7001	accuracy + Sensor accuracy	U7001 accuracy + Sensor accuracy	
	U7005 Current (I) Combined Active power (P)		Max. φ 5 mm (0.20 in.)	U7005 accuracy + Sensor accuracy	
5		DC	: ±0.3% ±0.10%	DC : ±0.3% ±0.10%	
Accuracy		DC < f ≤ 66 Hz	: ±0.3% ±0.01%	DC < f ≤ 66 Hz : ±0.3% ±0.05%	
Acc	Sensor only (amplitude)*1	66 Hz < f ≤ 500 Hz	: ±0.3% ±0.02%	66 Hz < f ≤ 500 Hz : ±0.3% ±0.05%	
	±(% of reading +% of full scale)	500 Hz < f ≤ 1 kHz	: ±0.5% ±0.05%	500 Hz < f ≤ 1 kHz : ±0.5% ±0.05%	
	full scale is rated current of sensor	1 kHz < f ≤ 5 kHz	: ±1.0% ±0.10%	1 kHz < f ≤ 5 kHz : ±1.0% ±0.10%	
		5 kHz < f ≤ 10 kHz	: ±5.0% ±0.10%	5 kHz < f ≤ 10 kHz : ±5.0% ±0.10%	
		10 kHz < f ≤ 100 kHz	: ±30% ±0.10%	10 kHz < f ≤ 100 kHz : ±30% ±0.10%	
	ommon-Mode Rejection Ratio		o 100 Hz), 130 dB or greater (100 Hz to 1 kHz)	140 dB or greater (DC to 100 Hz), 125 dB or greater (100 Hz to 1 kHz)	
(CI	MRR)	(effect on outpi	ut voltage and common mode voltage)	(effect on output voltage and common mode voltage)	
Frequency derating		and	7.: Ambient temperature 5.7: \$450°C) 5.7: \$450°C) 100 1k 100 100 Frequency [Hz]	10 Tr. Ambient temperature	
Ou	utput voltage		0.1 V/A (= 2 V/20 A)	1 V/A	
Ор	perating temperature and humidity*2		to 85°C (-40°F to 185°F), 80% RH or less C to 50°C (-77°F to 122°F), 80% RH or less	Sensor: -40°C to 85°C (-40°F to 185°F), 80% RH or less Multiplexer: -25°C to 50°C (-77°F to 122°F), 80% RH or less	
Storage temperature and humidity*2		Sensor and multiplexer: -25°C to 50°C (-77°F to 122°F), 80% RH or less		Sensor and multiplexer: -25°C to 50°C (-77°F to 122°F), 80% RH or less	
Sta	andards	Safety	r: EN 61010, EMC: EN 61326	Safety: EN 61010, EMC: EN 61326	
Ca	able length	Between multiplexer	r to multiplexer: approx. 4 m (13.12 ft.) to output connector: approx 0.2 m (0.66 ft.)	Between sensor to multiplexer: approx. 4 m (13.12 ft.) Between multiplexer to output connector: approx 0.2 m (0.66 ft.)	
Dir	mensions		4H \times 14.2D mm (approx. 3.00W \times 0.92H \times 0.56D in.) DH \times 26.5D mm (approx. 3.15W \times 0.79H \times 1.04D in.)	Sensor: Approx. $76.5W \times 23.4 \text{ H} \times 14.2D \text{ mm}$ (approx. $3.00W \times 0.92\text{H} \times 0.56D \text{ in.}$ Multiplexer: Approx. $80W \times 20\text{H} \times 26.5D \text{ mm}$ (approx. $3.15W \times 0.79\text{H} \times 1.04D \text{ in.}$)	
Mass		Approx. 160 g (5.64 oz.)		Approx. 160 g (5.64 oz.)	

^{*1:} $\pm(\%$ of reading + % of full scale) , full scale is rated current of sensor *2: Non-condensing

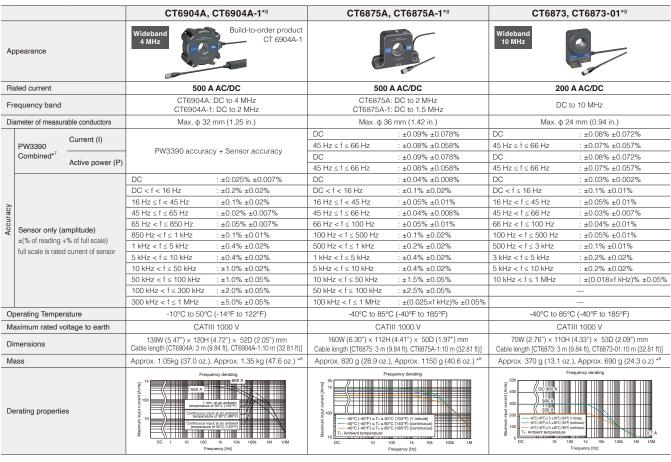
		CT6846A		CT6845A		CT6844A		
Appearance								
Rated current		1000	A AC/DC	500	A AC/DC	500 Å	A AC/DC	
Fr	equency band		DC t	to 100 kHz	DC t	o 200 kHz	DC to	500 kHz
Di	ameter of measur	able conductors	Max. φ 5	0 mm (1.97 in.)	Max. φ 50	0 mm (1.97 in.)	Max. φ 20	mm (0.79 in.)
	PW3390	Current (I)	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.25% ±0.09% : ±0.24% ±0.07%	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.25% ±0.09% : ±0.24% ±0.07%	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.25% ±0.09% : ±0.24% ±0.07%
	Combined*3	Active power (P)	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.25% ±0.09% : ±0.24% ±0.07%	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.25% ±0.09% : ±0.24% ±0.07%	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.25% ±0.09% : ±0.24% ±0.07%
			DC	: ±0.2% ±0.07%	DC	: ±0.2% ±0.07%	DC	: ±0.2% ±0.02%
>			DC < f ≤ 100 Hz	: ±0.2% ±0.02%	DC < f ≤ 100 Hz	: ±0.2% ±0.02%	DC < f ≤ 100 Hz	: ±0.2% ±0.01%
ccuracy			100 Hz < f ≤ 500 Hz	: ±0.5% ±0.02%	100 Hz < f ≤ 500 Hz	: ±0.3% ±0.02%	100 Hz < f ≤ 500 Hz	: ±0.3% ±0.02%
CCL	Sensor only (a	mplitude)	500 Hz < f ≤ 1 kHz	: ±1.0% ±0.02%	500 Hz < f ≤ 1 kHz	: ±0.5% ±0.02%	500 Hz < f ≤ 1 kHz	: ±0.5% ±0.02%
٩	±(% of reading +		1 kHz < f ≤ 5 kHz	: ±2.0% ±0.02%	1 kHz < f ≤ 5 kHz	: ±1.0% ±0.02%	1 kHz < f ≤ 5 kHz	: ±1.0% ±0.02%
		current of sensor	5 kHz < f ≤ 10 kHz	: ±5% ±0.02%	5 kHz < f ≤ 10 kHz	: ±1.5% ±0.02%	5 kHz < f ≤ 10 kHz	: ±1.5% ±0.02%
			10 kHz < f ≤ 50 kHz	: ±30% ±0.02%	10 kHz < f ≤ 20 kHz	: ±5% ±0.02%	10 kHz < f ≤ 50 kHz	: ±5.0% ±0.02%
				_	20 kHz < f ≤ 50 kHz	: ±10% ±0.05%	50 kHz < f ≤ 100 kHz	: ±15% ±0.05%
				_	50 kHz < f ≤ 100 kHz	: ±30% ±0.05%	100 kHz < f ≤ 300 kHz	: ±30% ±0.05%
0	perating Temper	ature	-40°C to 85°C (-40°F to 185°F)		-40°C to 85°	C (-40°F to 185°F)	-40°C to 85°C	(-40°F to 185°F)
М	aximum rated vo	oltage to earth	CAT	CATIII 1000 V		CATIII 1000 V		II 1000 V
D	mensions			(4.57") H × 35 (1.38") D mm gth: 3 m (9.84 ft)	238 (9.37") W × 116 (4.57") H × 35 (1.38") D mm Cable length: 3 m (9.84 ft)		153 (6.02") W × 67 (2.64") H × 25 (0.98") D mm Cable length: 3 m (9.84 ft)	
М	ass		Approx.	990 g (34.9 oz)	Approx. 860 g (30.3 oz)		Approx. 400 g (14.1 oz)	
Derating properties		1800	100 tk 10k 100k 1M	1000 A	ntinuous)	1770 A	.) nuous) nuous)	

^{*3 ±(%} of reading + % of range), range is PW3390 CT6846A: Add ±0.15% of the range for 20 A range or 40 A range. CT6845A: Add ±0.15% of the range or 20 A range. CT6844A: Add ±0.15% of the range for 10 A range or 20 A range.

		CT6843A		CT6841A		9272-05	
Appearance							
Rated current		200	A AC/DC	20 A	AC/DC	200 A/20	A AC switching
Frequency band		DC to 500 kHz DC to 1 N onductors Max.		DC t	to 1 MHz	1kHz	to 100 kHz
Diameter of measu	rable conductors			mm (0.79 in.)	Max. φ 4	6 mm (1.81 in.)	
PW3390	Current (I)	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.25% ±0.09% : ±0.24% ±0.07%	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.25% ±0.12% : ±0.24% ±0.07%		
Combined*4	Active power (P)	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.25% ±0.09% : ±0.24% ±0.07%	DC 45 Hz ≤ f ≤ 66 Hz	: ±0.25% ±0.12% : ±0.24% ±0.07%	PW3390 accuracy + Sensor accurac	acy + Sensor accuracy
	•	DC	: ±0.2% ±0.02%	DC	: ±0.2% ±0.05%		_
		DC < f ≤ 100 Hz	: ±0.2% ±0.01%	DC < f ≤ 100 Hz	: ±0.2% ±0.01%	1 Hz ≤ f < 5 Hz	: ±2.0% ±0.10%
2		100 Hz < f ≤ 500 Hz	: ±0.3% ±0.02%	100 Hz < f ≤ 500 Hz	: ±0.3% ±0.02%	5 Hz ≤ f < 10 Hz	: ±1.0% ±0.05%
Sensor only (a		500 Hz < f ≤ 1 kHz	: ±0.5% ±0.02%	500 Hz < f ≤ 1 kHz	: ±0.5% ±0.02%	10 Hz ≤ f < 45 Hz	: ±0.5% ±0.02%
Sensor only (a	amplitude)	1 kHz < f ≤ 5 kHz	: ±1.0% ±0.02%	1 kHz < f ≤ 5 kHz	: ±1.0% ±0.02%	45 Hz < f ≤ 66 Hz	: ±0.3% ±0.01%
±(% of reading	+% of full scale)	5 Hz < f ≤ 10 kHz	: ±1.5% ±0.02%	5 Hz < f ≤ 10 kHz	: ±1.5% ±0.02%	66 Hz < f ≤ 1 kHz	: ±0.5% ±0.02%
full scale is rate	d current of sensor	10 kHz < f ≤ 50 kHz	: ±5.0% ±0.02%	10 kHz < f ≤ 50 kHz	: ±2.0% ±0.02%	1 kHz < f ≤ 5 kHz	: ±1.0% ±0.05%
		50 kHz < f ≤ 100 kHz	: ±15% ±0.05%	50 kHz < f ≤ 100 kHz	: ±5.0% ±0.05%	5 kHz < f ≤ 10 kHz	: ±2.5% ±0.10%
		100 kHz < f ≤ 300 kHz	: ±15% ±0.05%	100 kHz < f ≤ 300 kHz	: ±10% ±0.05%	10 kHz < f ≤ 50 kHz	: ±5.0% ±0.10%
		300 kHz < f ≤ 500 kHz	: ±30% ±0.05%	300 kHz < f ≤ 500 kHz	: ±15% ±0.05%	50 kHz < f ≤ 100 kHz	: ±30.0% ±0.10%
			_	500 kHz < f < 1 MHz	: ±30% ±0.05%		_
Operating Tempe	rature	-40°C to 85°C (-40°F to 185°F)		-40°C to 85°C (-40°F to 185°F)		0°C to 50°C (32°F to 122°F)	
Maximum rated v	oltage to earth	CAT	III 1000 V	CATIII 1000 V		CATIII AC600 V rms	
Dimensions		153 (6.02") W × 67 (2.64") H × 25 (0.98") D mm Cable length: 3 m (9.84 ft)		153 (6.02") W × 67 (2.64") H × 25 (0.98") D mm Cable length: 3 m (9.84 ft)		78 (3.07") W × 188 (7.40") H × 35 (1.38") D mm Cable length: 3 m (9.84 ft)	
Mass		Approx. 3	370 g (13.1 oz)	Approx. 350 g (12.3 oz)		Approx. 450 g (15.9 oz)	
Derating properties		ADDIOX. 370 g (13.1 02) 600				000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

 $^{^{*4}}$ \pm (% of reading + % of range) , range is PW3390 CT6843A: Add \pm 0.15% of the range for 0.4 A range or 0.8 A range. CT6841A: Add \pm 0.15% of the range for 0.4 A range or 0.8 A range.

 $\label{thm:custom} \text{Custom cable lengths also available. Please inquire with your Hioki distributor.}$


Current sensors High accuracy pass-through

CT6877A, CT6877A-1*6		CT6876A, CT6876A-1*6		CT6904A-2, CT6904A-3*6				
Appearance						Wideband 4 MHz Build-to-order product CT6904A-2 CT6904A-3		
ated current		2000	A AC/DC	1000	A AC/DC	800 8	800 A AC/DC	
Frequency band		DC to 1 MHz		CT6876A: DC to 1.5 MHz CT6876A-1: DC to 1.2 MHz		CT6904A-2: DC to 4 MHz CT6904A-3: DC to 2 MHz		
ameter of measu	rable conductors	Max. φ 80	mm (3.14 in.)	Max. φ 36	6 mm (1.42 in.)	Max. φ 32	mm (1.25 in.)	
PW3390 Combined*5	Current (I) Active power (P)	DC 45 Hz ≤ f ≤ 66 Hz DC	: ±0.09% ±0.078% : ±0.08% ±0.058% : ±0.09% ±0.078%	DC 45 Hz ≤ f ≤ 66 Hz DC	: ±0.09% ±0.078% : ±0.08% ±0.058% : ±0.09% ±0.078%	PW3390 accuracy + Sensor accuracy		
							: ±0.030% ±0.009%	
Sensor only (amplitude)							: ±0.2% ±0.025%	
							: ±0.1% ±0.025%	
							: ±0.025% ±0.009% : ±0.05% ±0.009%	
Sensor only (a	amplitude)						: ±0.1% ±0.013%	
±(% of reading -	+% of full scale)						: ±0.4% ±0.025%	
full scale is rated	d current of sensor					-	: ±0.4% ±0.025%	
							: ±1% ±0.025%	
							: ±1.0% ±0.063%	
							: ±2.0% ±0.063%	
			_	100 kHz < f ≤ 1 MHz		300 kHz < f ≤ 1 MHz	: ±5.0% ±0.063%	
perating Tempe	rature	-40°C to 85°0	C (-40°F to 185°F)	(4.44 // 4.44		-10°C to 50°C	C (-14°F to 122°F)	
<u> </u>						CATIII 1000 V		
Dimensions		229W (9.02") × 232H	(9.13") × 112D (4.41") mm	160W (6.30") × 112H (4.41") × 50D (1.97") mm		139W (5.47") × 120H (4.72") × 52D (2.05") mm		
ass		Approx. 5 kg (176.4 oz.)	, Approx. 5.3 kg (187.0 oz.) *6	Approx. 970 g (34.2 oz.)	, Approx. 1300 g (45.9 oz.) *6	Approx. 1150 g (40.6 oz.), Approx. 1450 g (51.1 oz.) *		
Derating properties		Free 2k	uency derating	2k Fri F	councy derating	Freq	mono A	
	sated current equency band ameter of measu PW3390 Combined*5 Sensor only (a ±(% of reading) full scale is rated perating Tempe aximum rated v mensions ass	ated current equency band ameter of measurable conductors PW3390 Combined*5 Active power (P) Sensor only (amplitude) ±(% of reading +% of full scale) full scale is rated current of sensor berating Temperature aximum rated voltage to earth mensions ass	## 2000 ##	## 2000 A AC/DC ## 20	### 2000 A AC/DC ### 1000 ### 2000 A AC/DC ### 1000 ### 2000 A AC/DC ### 2 CT6676A: CT6676A: The power of t	Department 2000 A AC/DC 1000 A AC/DC 1000 A AC/DC	Sensor only (amplitude) 2	

*5 ± (% of reading + % of range), range is PW6001

CT6877A/CT6877A-1: Add ±0.15% of the range for 40 A range or 80 A range; CT6876A/CT6876A-1: Add ±0.15% of the range for 20 A range or 40 A range

^{*6} The CT6877A-1, CT6876A-1, and CT6904A-3 have a 10 m cord. For the CT6877A-1, add ±(0.005 x f kHz)% of reading for amplitude accuracy and ±(0.015 x f kHz)° for phase accuracy for frequencies of 1 kHz < f ≤ 700 kHz. For the CT6876A-1, add $\pm (0.005 \times f \text{ kHz})\%$ of reading for amplitude accuracy and $\pm (0.015 \times f \text{ kHz})\%$ for phase accuracy for frequencies of 1 kHz < f \leq 1 MHz. For the CT6904A-3, add $\pm (0.015 \times f \text{ kHz})\%$ of reading for amplitude accuracy for frequencies of 50 kHz < f \leq 1 MHz.

^{±(%} of reading + % of range), range is PW3390

CT6875A/CT6875A-1: Add ±0.15% of the range for 10 A range or 20 A range; CT6873/CT6873-01: Add ±0.15% of the range for 4 A range or 8 A range.

1 The CT6904A-1, CT6875A-1, and CT6873-01 have a 10 m cord. For the CT6904A-1, add ±(0.015 × f kHz)% of reading for amplitude accuracy for frequencies of 50 kHz < f ≤ 1 MHz. For the CT6875A-1, add $\pm (0.005 \times f \text{ kHz})\%$ of reading for amplitude accuracy and $\pm (0.015 \times f \text{ kHz})\%$ for phase accuracy for frequencies of 1 kHz < f \leq 1 MHz. For the CT6873-01, add $\pm (0.015 \times f \text{ kHz})\%$ for phase accuracy for frequencies of 1 kHz < f \leq 1 MHz.

		CT6863-05		CT6872, CT6872-01*10		CT6862-05	
Appearance				Wideband 10 MHz			
R	ated current	200 /	A AC/DC	50	A AC/DC	50 A AC/DC	
Fr	equency band	DC to 500 kHz		DC	to 10 MHz	DC to 1 MHz	
Di	ameter of measurable conductors	Max. φ 24	mm (0.94 in.)	Max. φ 2	4 mm (0.94 in.)	Max. φ 24	1 mm (0.94 in.)
	PW3390 Combined*9 Active power (P)	PW3390 accuracy + Sensor accuracy		DC $45 \text{ Hz} \le f \le 66 \text{ Hz}$ DC $45 \text{ Hz} \le f \le 66 \text{ Hz}$: ±0.08% ±0.072% : ±0.07% ±0.057% : ±0.08% ±0.072% : ±0.07% ±0.057%	PW3390 accuracy + Sensor accuracy	
		DC	: ±0.05% ±0.01%	DC	: ±0.03% ±0.002%	DC	: ±0.05% ±0.01%
		DC < f ≤ 16 Hz	: ±0.10% ±0.02%	DC < f ≤ 16 Hz	: ±0.1% ±0.01%	DC < f ≤ 16 Hz	: ±0.10% ±0.02%
ે		16 Hz ≤ f < 400 Hz	: ±0.05% ±0.01%	16 Hz < f ≤ 45 Hz	: ±0.05% ±0.01%	16 Hz ≤ f < 400 Hz	: ±0.05% ±0.01%
Accuracy		400 Hz ≤ f ≤ 1 kHz	: ±0.2% ±0.02%	45 Hz < f ≤ 66 Hz	: ±0.03% ±0.007%	400 Hz ≤ f ≤ 1 kHz	: ±0.2% ±0.02%
Acc	Sensor only (amplitude)	1 kHz < f ≤ 5 kHz	: ±0.7% ±0.02%	66 Hz < f ≤ 100 Hz	: ±0.04% ±0.01%	1 kHz < f ≤ 5 kHz	: ±0.7% ±0.02%
	±(% of reading +% of full scale)	5 kHz < f ≤ 10 kHz	: ±1.0% ±0.02%	100 Hz < f ≤ 500 Hz	: ±0.06% ±0.01%	5 kHz < f ≤ 10 kHz	: ±1.0% ±0.02%
	full scale is rated current of sensor	10 kHz < f ≤ 50 kHz	: ±2.0% ±0.02%	500 Hz < f ≤ 1 kHz	: ±0.1% ±0.01%	10 kHz < f ≤ 50 kHz	: ±1.0% ±0.02%
		50 kHz < f ≤ 100 kHz	: ±5.0% ±0.05%	1 kHz < f ≤ 5 kHz	: ±0.15% ±0.02%	50 kHz < f ≤ 100 kHz	: ±2.0% ±0.05%
		100 kHz < f ≤ 300 kHz	: ±10% ±0.05%	5 kHz < f ≤ 10 kHz	: ±0.15% ±0.02%	100 kHz < f ≤ 300 kHz	: ±5.0% ±0.05%
		300 kHz < f ≤ 500 kHz	: ±30% ±0.05%	10 kHz < f ≤ 1 MHz	: ±(0.012×f kHz)% ±0.05%	300 kHz < f ≤ 700 kHz	: ±10% ±0.05%
			_		_	700 kHz < f < 1 MHz	: ±30% ±0.05%
0	perating Temperature	-30°C to 85°C	(-22°F to 185°F)	-40°C to 85°C (-40°F to 185°F), 80% RH or less		-30°C to 85°C	C (-22°F to 185°F)
M	aximum rated voltage to earth	CATI	II 1000 V	CATIII 1000 V		CATIII 1000 V	
Di	mensions		3.94") × 53D (2.09") mm oprox. 3 m (9.84 ft.)	70W (2.76") × 110H (4.33") × 53D (2.09") mm Cable length [CT6872: 3 m (9.84 ft), CT6872-01:10 m (32.81 ft)]		70W (2.76") × 100H (3.94") × 53D (2.09") mm Cable length: Approx. 3 m (9.84 ft.)	
M	ass	Approx. 35	50 g (12.3 oz.)	Approx. 370 g (13.1 oz.), Approx. 690 g (24.3 o.z) *10		Approx. 340 g (12.0 oz.)	
Derating properties		Frequency derating (2) 500 (3) 400 (4) 400 (5) 400 (6) 400 (7) 400 (8) 400 (8) 400 (9		Frequency derating 100 100 A		F (equancy denating

 $^{^{*9}}$ ±(% of reading + % of range) , range is PW3390

Custom cable lengths also available. Please inquire with your Hioki distributor.

Standard Sensor

 * CT9920 (sold separately) is required to connect PW3390 to the sensor with HIOKI PL14 on the output connector.

	AC/DC CURRENT SENSOR CT7642 AC/DC AUTO ZERO CURRENT SENSOR CT7742	AC FLEXIBLE CURRENT SENSOR CT7044, CT7045, CT7046	
Appearance	8181		
Rated current	2000 A AC/DC	6000 A AC	
Frequency band	CT7642: DC to 10 kHz CT7742: DC to 5 kHz	10 Hz to 50 kHz (±3 dB)	
Diameter of measurable conductors	ф 55 mm (2.17 in) or less	CT7044: φ 100 mm (3.94 in) or less CT7045: φ 180 mm (7.09 in) or less CT7046: φ 254 mm (10.00 in) or less	
Basic accuracy	For DC, 45 Hz to 66 Hz Amplitude: ±1.5% rdg. ±0.5% f.s. For up to 66 Hz Phase:±2.3 °	For 45 to 66 Hz, with flexible cable core Amplitude: ±1.5% rdg. ±0.25% f.s. Phase:±1.0 °	
Frequency characteristics (Amplitude)	66 Hz to 1 kHz ±2.5% rdg. ±1.0% f.s.	-	
Operating temperature	-25°C to 65°C (-13°F to 149°F)	-25°C to 65°C (-13°F to 149°F)	
Effect of conductor position	±1.0% rdg. or less	±3.0% or less	
Effect of external magnetic fields In 400 A/m magnetic field (DC) 0.2% f.s. or less		In 400 A/m magnetic field (50 Hz/60 Hz) CT7044, CT7045: 2.0% f.s. or less CT7046: 2.5% f.s. or less	
Output connector	HIOKI PL14*	HIOKI PL14*	
Dimensions	64 mm (2.52 in) W x 195 mm (7.68 in) H x 34 mm (1.34 in) D Cable length: 2.5 m (8.20 ft)	Circuit box: 25 mm (0.98 in) W x 72 mm (2.83 in) H x 20 mm (0.79 in) D Cable length: 2.5 m (8.20 ft)	
Mass	510 g (18.0 oz)	CT7044: 160 g (5.6 oz) CT7045: 174 g (6.1 oz) CT7046: 186 g (6.6 oz)	
Derating properties	2.5 k 1	12 k (%) 10 k 14 k 18 k 10 10 6 k 10 10 10 1 k 10 k 100 k 10 100 1 k 100 k	

High Accuracy Sensor, Direct Wire Type

Newly developed DCCT method allows world-class measurement range and measurement accuracy at a rating of 50 A. (5 A rating version also available. Please inquire with your Hioki distributor.)

	AC/DC CURRENT BOX PW9100A-3	AC/DC CURRENT BOX PW9100A-4		
Appearance	in in in			
Number of input channels	3ch	4ch		
Rated current	50 A AC/DC			
Frequency band	DC to 3.5 MHz (-3 dB)			
Basic accuracy	For 45 Hz to 65 Hz [Amplitude]: ±0.02% rdg. ±0.005% f.s. Phase: ±0.1 ° For DC [Amplitude]: ±0.02% rdg. ±0.007% f.s.			
Maximum rated voltage to earth	CATII 1000 V, CATIII 600 V			

PW3390 Combined

 $\pm (\% \text{ of reading} + \% \text{ of range})$, range is PW3390

	Current (I)	Active power (P)
DC	±0.07% ±0.077%	±0.07% ±0.077%
45 Hz ≤ f ≤ 66 Hz	±0.06% ±0.055%	±0.06% ±0.055%

Add ±0.12% of range for 1 A range or 2 A range.

Scan the QR code to view the PW9100A website product page

CT6873/CT6873-01: Add \pm 0.15% of the range for 1 A range or 2 A range. **10 The CT6872-01 has a 10 m cord. For the CT6872-01, add \pm (0.015 × f kHz)° for phase accuracy for frequencies of 1 kHz < f ≤ 1 MHz.

Model: POWER ANALYZER PW3390

Model No. (Order Code)	D/A output	Motor analysis
PW3390-01	_	_
PW3390-02	V	_
PW3390-03	V	✓

Accessories: Instruction Manual ×1, Measurement Guide ×1, Power cord ×1, USB cable ×1, Input cord label ×2, D-sub 25-pin connector ×1 (PW3390-02, PW3390-03)

- The separately sold voltage cord and current sensor are required for taking measurements.
- Specify the number of built-in channels and whether to include the Motor Analysis & D/A Output upon order for factory installation. Please contact your local Hioki sales subsidiary or branch for changes after shipment.

Current measurement options (High accuracy: clamp type)

Model No. (Order Code) Model		Rated current	Frequency band	Cable length	
CT6831	AC/DC CURRENT PROBE	20 A rms	DC to 100 kHz	4.2 m	
CT6830	AC/DC CURRENT PROBE	2 A rms	DC to 100 kHz	4.2 m	
CT6846A	AC/DC CURRENT PROBE	1000 A rms	DC to 100 kHz	3 m	
CT6845A	AC/DC CURRENT PROBE	500 A rms	DC to 200 kHz	3 m	
CT6844A	AC/DC CURRENT PROBE	500 A rms	DC to 500 kHz	3 m	
CT6843A	AC/DC CURRENT PROBE	200 A rms	DC to 700 kHz	3 m	
CT6841A	AC/DC CURRENT PROBE	20 A rms	DC to 2 MHz	3 m	
9272-05	CLAMP ON SENSOR	20 A/200 A rms AC	1 Hz to 100 kHz	3 m	

Current measurement options (High accuracy: pass-through, direct connection type)

Model No. (Order Code)	Model	Rated current	Frequency band	Number of channels Cable length
CT6877A	AC/DC CURRENT SENSOR	2000 A rms	DC to 1 MHz	3 m
CT6877A-1	AC/DC CURRENT SENSOR	2000 A rms	DC to 1 MHz	10 m
CT6876A	AC/DC CURRENT SENSOR	1000 A rms	DC to 1.5 MHz	3 m
CT6876A-1	AC/DC CURRENT SENSOR	1000 A rms	DC to 1.2 MHz	10 m
CT6904A-2*	AC/DC CURRENT SENSOR	800 A rms	DC to 4 MHz	3 m
CT6904A-3*	AC/DC CURRENT SENSOR	800 A rms	DC to 2 MHz	10 m
CT6904A	AC/DC CURRENT SENSOR	500 A rms	DC to 4 MHz	3 m
CT6904A-1*	AC/DC CURRENT SENSOR	500 A rms	DC to 2 MHz	10 m
CT6875A	AC/DC CURRENT SENSOR	500 A rms	DC to 2 MHz	3 m
CT6875A-1	AC/DC CURRENT SENSOR	500 A rms	DC to 1.5 MHz	10 m
CT6873	AC/DC CURRENT SENSOR	200 A rms	DC to 10 MHz	3 m
CT6873-01	AC/DC CURRENT SENSOR	200 A rms	DC to 10 MHz	10 m
CT6863-05	AC/DC CURRENT SENSOR	200 A rms	DC to 500 kHz	3 m
CT6872	AC/DC CURRENT SENSOR	50 A rms	DC to 10 MHz	3 m
CT6872-01	AC/DC CURRENT SENSOR	50 A rms	DC to 10 MHz	10 m
CT6862-05	AC/DC CURRENT SENSOR	50 A rms	DC to 1 MHz	3 m
PW9100A-3	AC/DC CURRENT BOX	50 A rms	DC to 3.5 MHz	3 ch
PW9100A-4	AC/DC CURRENT BOX	50 A rms	DC to 3.5 MHz	4 ch

^{*} Build-to-order product

Current measurement options (Standard Sensor)

Model No. (Order Code)	Model	Rated current	Frequency band	Cable length
CT7742**	AC/DC AUTO ZERO CURRENT SENSOR	2000 A rms	DC to 5 kHz	2.5 m
CT7642**	AC/DC CURRENT SENSOR	2000 A rms	DC to 10 kHz	2.5 m
CT7044**	AC FLEXIBLE CURRENT SENSOR (φ 100 mm (3.94 in))	6000 A rms	10 Hz to 50 kHz	2.5 m
CT7045**	AC FLEXIBLE CURRENT SENSOR (\$\phi\$ 180 mm (7.09 in))	6000 A rms	10 Hz to 50 kHz	2.5 m
CT7046**	AC FLEXIBLE CURRENT SENSOR (\$\phi\$ 254 mm (10.00 in))	6000 A rms	10 Hz to 50 kHz	2.5 m

^{**} CONVERSION CABLE CT9920 is required to connect to the PW3390.

CONVERSION CABLE CT9900

Required to connect PW3390 to the current sensor with HIOKI PL23 on the output connector.

[Applicable products] CT6841, CT6843, CT6844, CT6845, CT6846, CT6862, CT6863, 9272-10

CONVERSION CABLE CT9920

Required to connect PW3390 to the current sensor with HIOKI PL14 on the output connector.

[Applicable products] CT7742, CT7642, CT7044, CT7045, CT7046

CONNECTION CABLE CT9904

Cable length: 1 m (3.28 ft) Required to connect the summing waveform output terminal of CT9557 to PW3390.

[Applicable products] CT9557

Voltage Measurement Options

VOLTAGE CORD L9438-50

banana-banana (red, black, 1 each), alligator clip, spiral tube, approx. 3 m (9.84 ft.) length CAT IV 600 V, CAT III 1000 V

VOLTAGE CORD L1000

banana-banana (red, yellow, blue, gray, 1 each, black \times 4), alligator clip, approx. 3 m (9.84 ft.) length CAT IV 600 V, CAT III 1000 V

EXTENSION CABLE SET L4931

banana-banana (red, black, 1 each), For extension of L9438-50 or L1000, approx. 3 m (9.84 ft.) length, With connector CATIV600 V, CATIII1000 V

CATIV600 V, CATILITOOU V

WIRING ADAPTER PW9000

When making a 3-phase 3-wire (3P3W3M) connection, this product allows you to reduce the number of voltage cords from 6 to 3.

CATIV600 V, CATIII1000 V

AC/DC HIGH VOLTAGE DIVIDER VT1005

VT1005 divides and outputs voltages of up to 5000 V.

GRABBER CLIP L9243

GRABBER CLIP (red, black, 1 each) Attaches to the tip of the banana plug cable CAT II 1000 V

PATCH CORD L1021-01

for branching voltage input, banana branch to banana clip (red \times 1), 0.5 m (1.64 ft.) length CAT IV 600 V, CATIII 1000 V

PATCH CORD L1021-02

for branching voltage input, banana branch to banana clip (black \times 1), 0.5 m (1.64 ft.) length CAT IV600 V, CATIII 1000 V

WIRING ADAPTER PW9001

When making a 3-phase 4-wire (3P4W) connection, this product allows you to reduce the number of voltage cords from 6 to 4.

CATIV600 V, CATIII1000 V

VOLTAGE CORD L1050-01, L1050-03

or VT1005

L1050-01: 1.6 m (5.25 ft), L1050-03: 3.0 m (9.84 ft)

Connection Options

CONNECTION CORD L9217, L9217-01, L9217-02

For motor analysis input and connection to VT1005, BNC-BNC. L9217: 1.6 m (5.25 ft),L9217-01: 3.0 m (9.84 ft), L9217-02: 10 m (32.81 ft)

CONNECTION CABLE 9683

For synchronous measurement, Cable length: 1.5 m (4.92 ft)

CONVERSION ADAPTER 9704

For connection to VT1005 BNC-to-banana plug

LAN CABLE 9642

Supplied with straight to cross conversion connector, Cable length: 5 m (16.41 ft)

RS-232C CABLE 9637

9pin-9pin cross Cable length: 1.8 m (5.91 ft)

Other Options

PC CARD 512MB 9728 PC CARD 1GB 9729 PC CARD 2GB 9830

Use only PC Cards sold by HIOKI. Compatibility and performance are not guaranteed for PC cards made by other manufacturers. You may be unable to read from or save data to such cards.

CARRYING CASE 9794

Carrying Case for PW3390 and 3390 448 mm (17.64 in) W x 618 mm (24.33 in) H x 295 mm (11.61 in) D

Built-To-Order (Other)

Please contact your Hioki distributor or subsidiary for more information.

D/A output cable D-sub 25-pin - BNC (male)
Rackmount fittings (For EIA or JIS)
PW9100A 5A-rated model

Rackmount fittings

For EIA or JIS

D/A output cable

D-sub 25-pin - BNC (male) 16 ch conversion, Cord length: 2.5 m (8.20 ft)

Note: Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies.

DISTRIBUTED BY

HEADQUARTERS 81 Koizumi, Ueda, Nagano 386-1192 Japan https://www.hioki.com/

